- 1. Estime o volume do material presente em uma embalagem cilíndrica de 30 cm de altura, 6 cm de raio e 0,5 cm de espessura (Dica: o volume de um cilindro maciço com altura h e raio $r \in V(r) = \pi r^2 h$).
- 2. Calcule as seguintes somas:

(a)
$$\sum_{k=1}^{7} 3$$
 (b) $\sum_{k=1}^{100} 3$ (c) $\sum_{k=1}^{3} \frac{k-1}{k}$ (d) $\sum_{k=1}^{4} \cos(k\pi)$

- 3. Sabendo que $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ e $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, encontre $\sum_{k=1}^{n} k(2k-1)$.
- 4. A tabela a seguir apresenta o decaimento do íon ${\rm Mg^{2+}}$ no início do processo de transformação da aragonita em calcita:

Tempo (h)	$[\mathrm{Mg}^{2+}]$ (ppm)
0.0	5.5
1.5	5.1
3.0	5.375
7.0	4.75
21.5	3.75
32.0	2.5
36.0	1.75

Encontre a equação da reta que melhor se ajusta aos dados acima, e use esta equação para estimar a quantidade do íon $\mathrm{Mg^{2+}}$ após 5 horas. Se possível, visualize os dados e a equação da reta em um aplicativo gráfico (não é preciso imprimir).