

Universidade Federal do Pará

Coordenação do Programa de Pós-Graduação em Geofísica

MÉTODOS DE ELEMENTOS FINITOS PARA AS EQUAÇÕES DE MAXWELL

Saulo Pomponet Oliveira

Departamento de Matemática, Universidade Federal do Paraná, Curitiba-PR

Cronograma

22/08 : Equações de Maxwell

Métodos de elementos finitos para a equação do potencial Equações de Maxwell no regime harmônico Métodos de elementos finitos nodais

23/08 : Métodos de elementos finitos de aresta Panorama da pesquisa na área

Sumário - Quarta-feira 22/08

Equações de Maxwell

Interpretação física (meios homogêneos)

Equação do Potencial Elétrico

Formulação variacional Método de Galerkin

Métodos de Elementos Finitos (2D)

Geração da malha Elemento de referência Algoritmo de montagem Exemplos

Equação de Maxwell no regime harmônico

Formulação Variacional Formulação Variacional no plano

Métodos de Elementos Finitos Nodais

Exemplo

→ @ ト + 돈 >

Equações de Maxwell:

$$\frac{\partial \boldsymbol{D}}{\partial t} - \nabla \times \boldsymbol{H} + \boldsymbol{J} = \boldsymbol{0}$$
$$\frac{\partial \boldsymbol{B}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot \boldsymbol{D} = \rho$$
$$\nabla \cdot \boldsymbol{B} = \boldsymbol{0}$$

Equações de Maxwell:

$$\begin{array}{l} \frac{\partial \boldsymbol{D}}{\partial t} - \nabla \times \boldsymbol{H} + \boldsymbol{J} = \boldsymbol{0} \quad \text{Lei de Ampère-Maxwell} \\ \frac{\partial \boldsymbol{B}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0} \quad \text{Lei de Faraday} \\ \nabla \cdot \boldsymbol{D} = \rho \quad \text{Lei de Gauss} \\ \nabla \cdot \boldsymbol{B} = \boldsymbol{0} \quad \text{``Lei de Gauss'' do magnetismo} \end{array}$$

Equações de Maxwell:

$$\begin{array}{l} \displaystyle \frac{\partial \boldsymbol{D}}{\partial t} - \nabla \times \boldsymbol{H} + \boldsymbol{J} = \boldsymbol{0} \quad \text{Lei de Ampère-Maxwell} \\ \displaystyle \frac{\partial \boldsymbol{B}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0} \quad \text{Lei de Faraday} \\ \displaystyle \nabla \cdot \boldsymbol{D} = \rho \quad \text{Lei de Gauss} \\ \displaystyle \nabla \cdot \boldsymbol{B} = \boldsymbol{0} \quad \text{``Lei de Gauss'' do magnetismo} \end{array}$$

Grandezas envolvidas:

- E: campo elétrico
- H: campo magnético
- D: indução elétrica
- B: indução magnética
- J: densidade de corrente elétrica
- ρ: densidade de carga elétrica

▶ < Ξ >

Motivação

Equações de Maxwell:

$$\frac{\partial \boldsymbol{D}}{\partial t} - \nabla \times \boldsymbol{H} + \boldsymbol{J} = \boldsymbol{0}$$
$$\frac{\partial \boldsymbol{B}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot \boldsymbol{D} = \rho$$
$$\nabla \cdot \boldsymbol{B} = \boldsymbol{0}$$

As equações de Maxwell servem como modelo para uma vasta gama de fenômenos eletromagnéticos

Motivação

Equações de Maxwell:

$$\frac{\partial \boldsymbol{D}}{\partial t} - \nabla \times \boldsymbol{H} + \boldsymbol{J} = \boldsymbol{0}$$
$$\frac{\partial \boldsymbol{B}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot \boldsymbol{D} = \rho$$
$$\nabla \cdot \boldsymbol{B} = \boldsymbol{0}$$

As equações de Maxwell servem como modelo para uma vasta gama de fenômenos eletromagnéticos

A solução destas equações é relevante em

- Comunicação sem fio
- Exames médicos não-invasivos
- Levantamento não-destrutivo do subsolo

<02 > < ≥ >

Vamos assumir relações constitutivas lineares:

- $D = \epsilon \cdot E \quad \epsilon(x)$: tensor de permissividade elétrica

<02 > < ≥ >

Vamos assumir relações constitutivas lineares:

 $egin{array}{lll} D &= \epsilon \cdot E & \epsilon(x): ext{tensor} \ ext{depermissividade elétrica} \ B &= \mu \cdot H & \mu(x): ext{tensor} \ ext{depermissividade magnética} \end{array}$

Caso Isotrópico:
$$\boldsymbol{\epsilon}(\boldsymbol{x}) = \begin{bmatrix} \boldsymbol{\epsilon}(\boldsymbol{x}) & 0 & 0\\ 0 & \boldsymbol{\epsilon}(\boldsymbol{x}) & 0\\ 0 & 0 & \boldsymbol{\epsilon}(\boldsymbol{x}) \end{bmatrix}$$

Vamos assumir relações constitutivas lineares:

 $egin{array}{lll} D &= \epsilon \cdot E & \epsilon(x): ext{tensor} \ ext{depermissividade elétrica} \ B &= \mu \cdot H & \mu(x): ext{tensor} \ ext{depermissividade magnética} \end{array}$

Caso Isotrópico:
$$\boldsymbol{\mu}(\boldsymbol{x}) = \begin{bmatrix} \mu(\boldsymbol{x}) & 0 & 0\\ 0 & \mu(\boldsymbol{x}) & 0\\ 0 & 0 & \mu(\boldsymbol{x}) \end{bmatrix}$$

Vamos assumir relações constitutivas lineares:

 $D = \epsilon \cdot E \quad \epsilon(x)$: tensor de permissividade elétrica $B = \mu \cdot H \quad \mu(x)$: tensor de permeabilidade magnética

Substituindo as eqs. constitutivas:

$$\frac{\partial \boldsymbol{D}}{\partial t} - \nabla \times \boldsymbol{H} + \boldsymbol{J} = \boldsymbol{0}$$
$$\frac{\partial \boldsymbol{B}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot \boldsymbol{D} = \rho$$
$$\nabla \cdot \boldsymbol{B} = 0$$

Vamos assumir relações constitutivas lineares:

 $D = \epsilon \cdot E \quad \epsilon(x)$: tensor de permissividade elétrica $B = \mu \cdot H \quad \mu(x)$: tensor de permeabilidade magnética

Substituindo as eqs. constitutivas:

$$\nabla \times \boldsymbol{H} - \boldsymbol{\epsilon} \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$$
$$\mu \frac{\partial \boldsymbol{H}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot (\boldsymbol{\epsilon} \boldsymbol{E}) = \boldsymbol{\rho}$$
$$\nabla \cdot (\boldsymbol{\mu} \boldsymbol{H}) = \boldsymbol{0}$$

Cálculo Vetorial 3D

Sejam
$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
, $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ e $\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$

- + *a* > + = +

Saulo P. Oliveira

Cálculo Vetorial 3D

Sejam
$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
, $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ e $\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$
Produto vetorial: $\boldsymbol{u} \times \boldsymbol{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$

Cálculo Vetorial 3D

Sejam
$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
, $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ $\boldsymbol{e} \quad \boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$
Produto vetorial: $\boldsymbol{u} \times \boldsymbol{v} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$
Rotacional: $\nabla \times \boldsymbol{v} = \begin{bmatrix} \partial_y v_3 - \partial_z v_2 \\ \partial_z v_1 - \partial_x v_3 \\ \partial_x v_2 - \partial_y v_1 \end{bmatrix} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \partial_x & \partial_y & \partial_z \\ v_1 & v_2 & v_3 \end{vmatrix}$

Cálculo Vetorial 3D

Sejam
$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
, $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ $\boldsymbol{e} \quad \boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$
Produto vetorial: $\boldsymbol{u} \times \boldsymbol{v} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$
Rotacional: $\nabla \times \boldsymbol{v} = \begin{bmatrix} \partial_y v_3 - \partial_z v_2 \\ \partial_z v_1 - \partial_x v_3 \\ \partial_x v_2 - \partial_y v_1 \end{bmatrix} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \partial_x & \partial_y & \partial_z \\ v_1 & v_2 & v_3 \end{vmatrix}$
Produto misto: $(\boldsymbol{w}, \boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{w} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$

< □ ト < 三 >

Cálculo Vetorial 3D

Operadores compostos:

 $\nabla\cdot(\nabla\times \boldsymbol{v})$

 $\bullet \bullet$

Cálculo Vetorial 3D

Operadores compostos:

$$\nabla\cdot(\nabla\times \boldsymbol{v})=(\nabla,\nabla,\boldsymbol{v})$$

 $\bullet \bullet$

Cálculo Vetorial 3D

Operadores compostos:

$$abla \cdot (
abla imes oldsymbol{v}) = egin{bmatrix} \partial_x & \partial_y & \partial_z \ \partial_x & \partial_y & \partial_z \ v_1 & v_2 & v_3 \end{bmatrix}$$

 $\bullet \bullet$

Cálculo Vetorial 3D

Operadores compostos:

$$\nabla\cdot(\nabla\times\boldsymbol{v})=0$$

 $\bullet \bullet$

Cálculo Vetorial 3D

Operadores compostos:

$$\begin{aligned} \nabla \cdot (\nabla \times \boldsymbol{v}) &= 0 \\ \text{Analogamente, } \nabla \times (\nabla \phi) &= \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \partial_x & \partial_y & \partial_z \\ \partial_x \phi & \partial_y \phi & \partial_z \phi \end{vmatrix} \end{aligned}$$

Cálculo Vetorial 3D

Operadores compostos:

$$\nabla \cdot (\nabla \times \boldsymbol{v}) = 0$$

Analogamente, $\nabla \times (\nabla \phi)^{"} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \partial_x & \partial_y & \partial_z \\ \partial_x & \partial_y & \partial_z \end{vmatrix} \phi = \mathbf{0}\phi^{"} = \mathbf{0}$

- 伊ト - ヨト

Cálculo Vetorial 3D

Operadores compostos:

 $\nabla \cdot (\nabla \times \boldsymbol{v}) = 0$

Analogamente,
$$\nabla \times (\nabla \phi)$$
" = $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ \partial_x & \partial_y & \partial_z \end{vmatrix} \phi = \mathbf{0}\phi$ " = 0

OBS: estas operações são formalizadas e generalizadas no contexto de formas diferenciais (Bossavit, 1988)

< 個ト < 三ト

Cálculo Vetorial 3D

Operadores compostos:

 $\nabla\cdot(\nabla\times\boldsymbol{v})=0$

Analogamente,
$$\nabla \times (\nabla \phi)$$
 " = $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ \partial_x & \partial_y & \partial_z \end{vmatrix} \phi = \mathbf{0}\phi$ " = $\mathbf{0}$

Consequências:

- Se $\boldsymbol{w} = \nabla \times \boldsymbol{v}$, então $\nabla \cdot \boldsymbol{w} = 0$
- Se $\boldsymbol{w} = \nabla \phi$, então $\nabla \times \boldsymbol{w} = \boldsymbol{0}$

- 伊ト - ヨト

Cálculo Vetorial 3D

Operadores compostos:

 $\nabla \cdot (\nabla \times \boldsymbol{v}) = 0$

Analogamente,
$$\nabla \times (\nabla \phi)$$
" = $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ \partial_x & \partial_y & \partial_z \end{vmatrix} \phi = \mathbf{0}\phi$ " = $\mathbf{0}$

Em domínios simplesmente conexos (Bossavit, 1998):

- $\boldsymbol{w} = \nabla \times \boldsymbol{v} \iff \nabla \cdot \boldsymbol{w} = 0$
- $\boldsymbol{w} = \nabla \phi \qquad \iff \quad \nabla \times \boldsymbol{w} = \boldsymbol{0}$

00

Cálculo Vetorial 3D

Operadores compostos:

 $\nabla \cdot (\nabla \times \boldsymbol{v}) = 0$

Analogamente,
$$\nabla \times (\nabla \phi)$$
" = $\begin{vmatrix} i & j & k \\ \partial_x & \partial_y & \partial_z \\ \partial_x & \partial_y & \partial_z \end{vmatrix} \phi = \mathbf{0}\phi$ " = $\mathbf{0}$

Em domínios simplesmente conexos (Bossavit, 1998):

- $\boldsymbol{w} = \nabla \times \boldsymbol{v} \quad \Longleftrightarrow \quad \nabla \cdot \boldsymbol{w} = 0$
- $w = \nabla \phi \qquad \iff \quad \nabla \times w = 0$

Teorema de Helmholtz: Dado um campo vetorial w, $\exists v, \phi$ tais que $w = \nabla \times v + \nabla \phi$

••

- 伊ト - ヨト

Cálculo Vetorial 3D

Operadores compostos:

 $\nabla \cdot (\nabla \times \boldsymbol{v}) = 0$

Analogamente,
$$\nabla \times (\nabla \phi)$$
" = $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ \partial_x & \partial_y & \partial_z \end{vmatrix} \phi = \mathbf{0}\phi$ " = $\mathbf{0}$

Em domínios simplesmente conexos (Bossavit, 1998):

- $\boldsymbol{w} = \nabla \times \boldsymbol{v} \iff \nabla \cdot \boldsymbol{w} = 0$
- $w = \nabla \phi \qquad \iff \quad \nabla \times w = 0$

Teorema de Helmholtz: Dado um campo vetorial *w*,

 $\exists v, \phi$ tais que $w = \nabla \times v + \nabla \phi$

Expressamos w em termos de dois potenciais:

- v: potencial vetorial (termo solenoidal)
- q: potencial escalar (termo irrotacional)

- 伊ト - ヨト

Meios homogêneos

Para meios homogêneos,

$$\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$$
$$\mu \frac{\partial \boldsymbol{H}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot (\epsilon \boldsymbol{E}) = \rho$$
$$\nabla \cdot (\mu \boldsymbol{H}) = 0$$

Meios homogêneos

Para meios homogêneos,

$$\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$$
$$\mu \frac{\partial \boldsymbol{H}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\epsilon \nabla \cdot \boldsymbol{E} = \rho$$
$$\mu \nabla \cdot \boldsymbol{H} = 0$$

Meios homogêneos

Para meios homogêneos,

$$abla imes oldsymbol{H} - \epsilon rac{\partial oldsymbol{E}}{\partial t} = oldsymbol{J}$$
 $\mu rac{\partial oldsymbol{H}}{\partial t} +
abla imes oldsymbol{E} = oldsymbol{0}$
 $abla \cdot oldsymbol{E} =
ho/\epsilon$
 $abla \cdot oldsymbol{H} = oldsymbol{0}$

Meios homogêneos

Para meios homogêneos,

$$egin{array}{rcl}
abla imes oldsymbol{H} & -\epsilon rac{\partial oldsymbol{E}}{\partial t} &=& oldsymbol{J} \ \mu rac{\partial oldsymbol{H}}{\partial t} +
abla imes oldsymbol{E} &=& oldsymbol{0} \
abla \cdot oldsymbol{E} &=&
ho/\epsilon \
abla \cdot oldsymbol{H} &=& oldsymbol{0} \
abla \cdot oldsymbol{E} &=&
ho/\epsilon \
abla \cdot oldsymbol{H} &=& oldsymbol{0} \end{array}$$

$$\nabla \cdot \boldsymbol{H} = 0 \Longrightarrow \boldsymbol{H} = \nabla \times \boldsymbol{A}, \text{ logo}$$
$$\nabla \times (\nabla \times \boldsymbol{A}) = \boldsymbol{J} + \epsilon \frac{\partial \boldsymbol{E}}{\partial t}$$
$$\nabla \times \boldsymbol{E} = -\mu \frac{\partial (\nabla \times \boldsymbol{A})}{\partial t}$$
$$\nabla \cdot \boldsymbol{E} = \rho/\epsilon$$

< ⊡ > < Ξ >

Meios homogêneos

Para meios homogêneos,

$$egin{array}{rcl}
abla imes oldsymbol{H} & + \epsilon rac{\partial oldsymbol{E}}{\partial t} & = & oldsymbol{J} \ \mu rac{\partial oldsymbol{H}}{\partial t} +
abla imes oldsymbol{E} & = & oldsymbol{0} \
abla \cdot oldsymbol{E} & = &
ho/\epsilon \
abla \cdot oldsymbol{H} & = & oldsymbol{0} \
abla \cdot oldsymbol{H} & = & oldsymbol{0} \end{array}$$

 $\nabla \cdot \boldsymbol{H} = 0 \Longrightarrow \boldsymbol{H} = \nabla \times \boldsymbol{A}, \log \boldsymbol{0}$

$$\nabla \times \nabla \times \mathbf{A} = \mathbf{J} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\mu \nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
$$\nabla \cdot \mathbf{E} = \rho/\epsilon$$

Meios homogêneos

Regime dependente do tempo (dinâmico):

$$\nabla \times \nabla \times \mathbf{A} = \mathbf{J} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\mu \nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
$$\nabla \cdot \mathbf{E} = \rho/\epsilon \qquad (\mathbf{H} = \nabla \times \mathbf{A})$$

Meios homogêneos

Regime dependente do tempo (dinâmico):

$$\nabla \times \nabla \times \mathbf{A} = \mathbf{J} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\mu \nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
$$\nabla \cdot \mathbf{E} = \rho/\epsilon \qquad (\mathbf{H} = \nabla \times \mathbf{A})$$

Considerando o regime estático,

$$abla imes
abla imes \mathbf{A} = \mathbf{J}$$

 $abla imes \mathbf{E} = 0$
 $abla \cdot \mathbf{E} = \rho/\epsilon$

- < ∰ > < ≣ >

Meios homogêneos

Regime dependente do tempo (dinâmico):

$$\nabla \times \nabla \times \mathbf{A} = \mathbf{J} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\mu \nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
$$\nabla \cdot \mathbf{E} = \rho/\epsilon \qquad (\mathbf{H} = \nabla \times \mathbf{A})$$

Considerando o regime estático,

$$abla imes
abla imes \mathbf{A} = \mathbf{J}$$
 $abla imes \mathbf{E} = 0$
 $abla \cdot \mathbf{E} = \rho/\epsilon$

- < ∰ > < ≣ >
Meios homogêneos

Regime dependente do tempo (dinâmico):

$$\nabla \times \nabla \times \mathbf{A} = \mathbf{J} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\mu \nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
$$\nabla \cdot \mathbf{E} = \rho/\epsilon \qquad (\mathbf{H} = \nabla \times \mathbf{A})$$

Considerando o regime estático,

$$abla imes
abla imes \mathbf{A} = \mathbf{J}$$
 $\mathbf{E} =
abla \phi$
 $abla \cdot \mathbf{E} =
abla / \epsilon$

< □ > < Ξ >

Meios homogêneos

Regime dependente do tempo (dinâmico):

$$\nabla \times \nabla \times \mathbf{A} = \mathbf{J} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\mu \nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
$$\nabla \cdot \mathbf{E} = \rho/\epsilon \qquad (\mathbf{H} = \nabla \times \mathbf{A})$$

Considerando o regime estático,

$$abla imes
abla imes oldsymbol{A} = oldsymbol{J}$$
 $abla imes (
abla \phi) =
ho / \epsilon$

< □ > < Ξ >

Meios homogêneos

Regime dependente do tempo (dinâmico):

$$\nabla \times \nabla \times \mathbf{A} = \mathbf{J} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\mu \nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
$$\nabla \cdot \mathbf{E} = \rho/\epsilon \qquad (\mathbf{H} = \nabla \times \mathbf{A})$$

Por convenção, $\boldsymbol{E}=-\nabla\phi$, de modo que

$$abla imes
abla imes \mathbf{A} = \mathbf{J}$$
 $-\Delta \phi =
ho/\epsilon \qquad (\mathbf{E} = -\nabla \phi, \ \mathbf{H} = \nabla imes \mathbf{A})$

- 《 伊 》 《 王 》

Meios homogêneos

Regime dependente do tempo (dinâmico):

$$\nabla \times \nabla \times \mathbf{A} = \mathbf{J} + \epsilon \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = -\mu \nabla \times \frac{\partial \mathbf{A}}{\partial t}$$
$$\nabla \cdot \mathbf{E} = \rho/\epsilon \qquad (\mathbf{H} = \nabla \times \mathbf{A})$$

Por convenção, $\boldsymbol{E}=-\nabla\phi$, de modo que

$$abla imes
abla imes A = J$$

 $-\Delta \phi =
ho/\epsilon \qquad (E = -\nabla \phi, \ H = \nabla imes A)$

Interpretação (S. Guerreiro) :

Estático: as fontes de E (H) são cargas (correntes) elétricas Ondas: a oscilação de E gera fonte em H, e vice-versa

Saulo P. Oliveira

Dey & Morrison (1979)

Da lei de Gauss,

$$abla \cdot (\epsilon E) =
ho$$

•0

Dey & Morrison (1979)

Da lei de Gauss,

$$\nabla \cdot \left(\epsilon \frac{\partial \boldsymbol{E}}{\partial t} \right) = \frac{\partial \rho}{\partial t}$$

< 4 ∰ ► < E ►

•0

Dey & Morrison (1979)

Da lei de Gauss,

$$\nabla \cdot \left(\epsilon \frac{\partial \boldsymbol{E}}{\partial t} \right) = \frac{\partial \rho}{\partial t}$$

Da lei de Ampère-Maxwell, $\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$, logo

$$abla \cdot (
abla imes \boldsymbol{H} - \boldsymbol{J}) = \frac{\partial
ho}{\partial t}$$

Dey & Morrison (1979)

Da lei de Gauss,

$$\nabla \cdot \left(\epsilon \frac{\partial \boldsymbol{E}}{\partial t} \right) \ = \ \frac{\partial \rho}{\partial t}$$

Da lei de Ampère-Maxwell, $\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$, logo

$$abla \cdot (
abla imes oldsymbol{H}) -
abla \cdot oldsymbol{J} = rac{\partial
ho}{\partial t}$$

•0

Dey & Morrison (1979)

Da lei de Gauss,

$$\nabla \cdot \left(\epsilon \frac{\partial \boldsymbol{E}}{\partial t} \right) = \frac{\partial \rho}{\partial t}$$

Da lei de Ampère-Maxwell, $\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$, logo

$$-\nabla \cdot \boldsymbol{J} = \frac{\partial \rho}{\partial t}$$

< 4 ₽ > < E >

۲

Dey & Morrison (1979)

Da lei de Gauss,

$$\nabla \cdot \left(\epsilon \frac{\partial \boldsymbol{E}}{\partial t}\right) = \frac{\partial \rho}{\partial t}$$

Da lei de Ampère-Maxwell, $\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$, logo

$$-\nabla \cdot \boldsymbol{J} = \frac{\partial \rho}{\partial t}$$

Substitução: lei de Gauss \rightarrow conservação de carga:

$$\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$$
$$\mu \frac{\partial \boldsymbol{H}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot (\epsilon \boldsymbol{E}) = \rho$$
$$\nabla \cdot (\mu \boldsymbol{H}) = 0$$

(4 部) (4 三)

۲

Dey & Morrison (1979)

Da lei de Gauss,

$$\nabla \cdot \left(\epsilon \frac{\partial \boldsymbol{E}}{\partial t}\right) = \frac{\partial \rho}{\partial t}$$

Da lei de Ampère-Maxwell, $\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$, logo

$$-\nabla \cdot \boldsymbol{J} = \frac{\partial \rho}{\partial t}$$

Substitução: lei de Gauss \rightarrow conservação de carga:

$$\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$$
$$\mu \frac{\partial \boldsymbol{H}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$-\nabla \cdot \boldsymbol{J} = \frac{\partial \rho}{\partial t}$$
$$\nabla \cdot (\mu \boldsymbol{H}) = \boldsymbol{0}$$

《 伊 ト 《 王)

Saulo P. Oliveira

Dey & Morrison (1979)

00

Corrente elétrica (Ward e Hohmann, 88): $I(t) = \int_{\partial\Omega} J(x, t) \cdot n \, d\Gamma$

Dey & Morrison (1979)

Corrente elétrica (Ward e Hohmann, 88): $I(t) = \int_{\Omega} \nabla \cdot \boldsymbol{J}(\boldsymbol{x}, t) d\Omega$

Dey & Morrison (1979)

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) d\Omega$

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) \, d\Omega$

Fonte pontual: $\rho(\boldsymbol{x},t) = \rho_o(t)\delta_{\boldsymbol{x}_o}(\boldsymbol{x}) \implies \frac{\partial \rho_o(t)}{\partial t} = -I(t)$

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) d\Omega$

Assumindo $\frac{\partial \rho}{\partial t} = -I_o \delta_{x_o}(x) = -f(x)$ e baixas frequências $\nabla \times H - \epsilon \frac{\partial E}{\partial t} = J$ $\mu \frac{\partial H}{\partial t} + \nabla \times E = 0$ $-\nabla \cdot J = \frac{\partial \rho}{\partial t}$ $\nabla \cdot (\mu H) = 0$

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) \, d\Omega$

Assumindo $\frac{\partial \rho}{\partial t} = -I_o \delta_{\boldsymbol{x}_o}(\boldsymbol{x}) = -f(\boldsymbol{x})$ e baixas frequências $\nabla \times \boldsymbol{H} = \boldsymbol{J}$ $\nabla \times \boldsymbol{E} = \boldsymbol{0}$ $-\nabla \cdot \boldsymbol{J} = -f(\boldsymbol{x})$ $\nabla \cdot (\mu \boldsymbol{H}) = 0$

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) \, d\Omega$

Assumindo $\frac{\partial \rho}{\partial t} = -I_o \delta_{\boldsymbol{x}_o}(\boldsymbol{x}) = -f(\boldsymbol{x})$ e baixas frequências $\nabla \times \boldsymbol{E} = \boldsymbol{0}$ $\nabla \cdot \boldsymbol{J} = f(\boldsymbol{x})$

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) \, d\Omega$

Assumindo $\frac{\partial \rho}{\partial t} = -I_o \delta_{\boldsymbol{x}_o}(\boldsymbol{x}) = -f(\boldsymbol{x})$ e baixas frequências $\boldsymbol{E} = -\nabla \phi$ $\nabla \cdot \boldsymbol{J} = f(\boldsymbol{x})$

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) d\Omega$

Assumindo
$$\frac{\partial \rho}{\partial t} = -I_o \delta_{x_o}(x) = -f(x)$$
 e baixas frequências
 $E = -\nabla \phi$
 $\nabla \cdot J = f(x)$

Vamos considerar a lei de Ohm $J = \sigma E$, assim,

$$\begin{array}{rcl} \boldsymbol{E} &=& -\nabla\phi \\ \nabla\cdot(\sigma\boldsymbol{E}) &=& f(\boldsymbol{x}) \end{array} \end{array}$$

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) d\Omega$

Assumindo $\frac{\partial \rho}{\partial t} = -I_o \delta_{\boldsymbol{x}_o}(\boldsymbol{x}) = -f(\boldsymbol{x})$ e baixas frequências $\boldsymbol{E} = -\nabla \phi$ $\nabla \cdot \boldsymbol{J} = f(\boldsymbol{x})$

Vamos considerar a lei de Ohm $J = \sigma E$, assim,

$$-\nabla\cdot\left(\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})\right)=f(\boldsymbol{x})$$

Corrente elétrica (Ward e Hohmann, 88): $I(t) = -\int_{\Omega} \frac{\partial \rho}{\partial t}(\boldsymbol{x}, t) d\Omega$

Assumindo
$$\frac{\partial \rho}{\partial t} = -I_o \delta_{x_o}(x) = -f(x)$$
 e baixas frequências
 $E = -\nabla \phi$
 $\nabla \cdot J = f(x)$

Vamos considerar a lei de Ohm $J = \sigma E$, assim,

$$-\nabla \cdot (\sigma(\boldsymbol{x})\nabla \phi(\boldsymbol{x})) = f(\boldsymbol{x})$$

Vamos considerar o seguinte problema:

$$egin{aligned} &igl(& -
abla \cdot (\sigma(m{x})
abla \phi(m{x})) = f(m{x}), &m{x} \in \Omega \ & \phi(m{x}) = 0, &m{x} \in \Gamma_1 \ &
abla \phi(m{x}) \cdot m{n} = 0, &m{x} \in \Gamma_2, & \Gamma_1 \cup \Gamma_2 = \partial \Omega. \end{aligned}$$

- 4 日 ト - 王 ト

Exemplo 1D

Considere o seguinte problema de valores de contorno:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

Exemplo 1D

Considere o seguinte problema de valores de contorno:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

Para $f \in C([0,1]), u \in \tilde{V} = \{u \in C^2([0,1]) \mid u(0) = u(1) = 0\}.$

Exemplo 1D

Considere o seguinte problema de valores de contorno:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

Para $f \in C([0,1]), u \in \tilde{V} = \{u \in C^2([0,1]) \mid u(0) = u(1) = 0\}.$ Dado $v \in \tilde{V}$,

Exemplo 1D

Considere o seguinte problema de valores de contorno:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

Para $f \in C([0,1]), u \in \tilde{V} = \{u \in C^2([0,1]) \mid u(0) = u(1) = 0\}.$ Dado $v \in \tilde{V}$,

$$-u''(x) = f(x)$$

Exemplo 1D

Considere o seguinte problema de valores de contorno:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

Para $f \in C([0,1]), u \in \tilde{V} = \{u \in C^2([0,1]) \mid u(0) = u(1) = 0\}.$ Dado $v \in \tilde{V}$,

$$-u''(x)v(x) = f(x)v(x)$$

.

Exemplo 1D

Considere o seguinte problema de valores de contorno:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

Para $f \in C([0,1]), u \in \tilde{V} = \{u \in C^2([0,1]) \mid u(0) = u(1) = 0\}.$ Dado $v \in \tilde{V}$,

$$\int_0^1 -u''(x)v(x)\,dx = \int_0^1 f(x)v(x)\,dx$$

- 《 🖓 🕨 《 톤 🕨

Exemplo 1D

Considere o seguinte problema de valores de contorno:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

Para $f \in C([0,1]), u \in \tilde{V} = \{u \in C^2([0,1]) \mid u(0) = u(1) = 0\}.$ Dado $v \in \tilde{V}$,

$$\int_0^1 -u''(x)v(x) \, dx \quad = \quad \int_0^1 f(x)v(x) \, dx$$

Integrando por partes:

$$-u'(1)v(1) + u'(0)v(0) + \int_0^1 u'(x)v'(x) \, dx = \int_0^1 f(x)v(x) \, dx$$

.

Exemplo 1D

Considere o seguinte problema de valores de contorno:

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

Para $f \in C([0,1]), u \in \tilde{V} = \{u \in C^2([0,1]) \mid u(0) = u(1) = 0\}.$ Dado $v \in \tilde{V}$,

$$\int_0^1 -u''(x)v(x) \, dx \quad = \quad \int_0^1 f(x)v(x) \, dx$$

Integrando por partes:

$$\int_0^1 u'(x)v'(x) \, dx = \int_0^1 f(x)v(x) \, dx$$

Exemplo 1D

A solução do problema de valores de contorno

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

satisfaz

$$\int_0^1 u'(x)v'(x) \, dx = \int_0^1 f(x)v(x) \, dx$$

Exemplo 1D

A solução do problema de valores de contorno

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

satisfaz

$$\int_0^1 u'(x)v'(x) \, dx = \int_0^1 f(x)v(x) \, dx$$

Novo espaço das soluções:

.

$$V = \left\{ v \in L^2([0,1]) \mid \int_0^1 v(x)^2 + v'(x)^2 \, dx < \infty, \ v(0) = v(1) = 0 \right\}$$

→ @ ト + 돈 >

Exemplo 1D

A solução do problema de valores de contorno

$$\begin{cases} -u''(x) = f(x), & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$

satisfaz

$$\int_0^1 u'(x)v'(x) \, dx = \int_0^1 f(x)v(x) \, dx$$

Novo espaço das soluções:

$$V = \left\{ v \in L^2([0,1]) \mid \int_0^1 v(x)^2 + v'(x)^2 \, dx < \infty, \ v(0) = v(1) = 0 \right\}$$

Formulação Variacional: encontrar $u \in V$ tal que

$$\int_0^1 u'(x)v'(x)\,dx = \int_0^1 f(x)v(x)\,dx \quad \forall \ v \in V.$$

Saulo P. Oliveira

Espaço vetorial da solução

Dado $u: \Omega \to I\!\!R$, vamos definir

$$\|u\|_{0} = \left(\int_{\Omega} |u(\boldsymbol{x})|^{2} d\Omega\right)^{1/2}$$
$$|u|_{1} = \left(\int_{\Omega} \nabla u(\boldsymbol{x}) \cdot \nabla u(\boldsymbol{x}) d\Omega\right)^{1/2}$$

Espaço vetorial da solução

Dado $u: \Omega \rightarrow I\!\!R$, vamos definir

$$\|u\|_{0} = \left(\int_{\Omega} |u(\boldsymbol{x})|^{2} d\Omega\right)^{1/2}$$
$$\|u\|_{1} = \left(\int_{\Omega} |\nabla u(\boldsymbol{x})|^{2} d\Omega\right)^{1/2}$$
$$\|u\|_{1} = \left(\|u\|_{0}^{2} + |u|_{1}^{2}\right)^{1/2}$$

Espaço vetorial da solução

Dado $u: \Omega \rightarrow I\!\!R$, vamos definir

$$\|u\|_{0} = \left(\int_{\Omega} |u(\boldsymbol{x})|^{2} d\Omega\right)^{1/2}$$
$$\|u\|_{1} = \left(\int_{\Omega} |\nabla u(\boldsymbol{x})|^{2} d\Omega\right)^{1/2}$$
$$\|u\|_{1} = \left(\|u\|_{0}^{2} + |u|_{1}^{2}\right)^{1/2}$$

Usaremos os seguintes espaços:

$$L^{2}(\Omega) = \{ v : \Omega \to I\!\!R \mid ||u||_{0} < \infty \}$$
$$H^{1}(\Omega) = \{ v : \Omega \to I\!\!R \mid ||u||_{1} < \infty \}$$

< ⊡ > < ∃ >
Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega\\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1\\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega\\ \phi(\boldsymbol{x}) = 0, \quad \boldsymbol{x} \in \Gamma_1\\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, \quad \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

- 세 🗗 🕨 🖉 🕨

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$- \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) = f(\boldsymbol{x})$$

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\nabla\cdot(\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x}))v(\boldsymbol{x}) = f(\boldsymbol{x})v(\boldsymbol{x})$$

• • •

- + *a* > + = >

Formulação Variacional

$$\left\{ \begin{array}{cc} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla \phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{array} \right.$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

- 세 문 🕨 🖉 🕨

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega\\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1\\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

Integrar por partes ?

(十日) (十日)

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

Teorema da divergência de Gauss:

$$\int_{\Omega} \nabla \cdot \boldsymbol{F}(\boldsymbol{x}) \, d\Omega = \int_{\Gamma} \boldsymbol{F}(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma$$

-< ⊕ > < ∋ >

Saulo P. Oliveira

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla \phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

1a. Identidade de Green: escolhendo $F = \sigma \nabla \phi v$

$$\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) v(\boldsymbol{x})) \ d\Omega = \int_{\Gamma} (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) v(\boldsymbol{x})) \cdot \boldsymbol{n} \ d\Gamma$$

٠

▲ 伊 ト ▲ 三 ト

Formulação Variacional

$$\left\{ \begin{array}{cc} -\nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{array} \right.$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

1a. Identidade de Green: escolhendo $F = \sigma \nabla \phi v$ $\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) + \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega = \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma$

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

1a. Identidade de Green: escolhendo $F = \sigma \nabla \phi v$

$$\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) d\Omega = \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma - \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega$$

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

1a. Identidade de Green: escolhendo $F = \sigma \nabla \phi v$

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) d\Omega = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega - \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma$$

《圖》《王》

000

Formulação Variacional

$$\begin{cases} -\nabla \cdot (\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\ \phi(\boldsymbol{x}) = 0, & \boldsymbol{x} \in \Gamma_1 \\ \nabla\phi(\boldsymbol{x}) \cdot \boldsymbol{n} = 0, & \boldsymbol{x} \in \Gamma_2 \end{cases}$$

Seja $V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}.$

Multiplicando a equação por $v \in V$ e integrando em Ω :

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

1a. Identidade de Green: escolhendo $F = \sigma \nabla \phi v$

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) d\Omega = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega - \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma$$

Formulação Variacional

 $\bullet \bullet \circ$

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) d\Omega = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega - \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma$$

<0> + 0 + + ≥ +

Formulação Variacional

 $\bullet \bullet \circ$

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) d\Omega = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega - \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma$$

Como
$$v \in V$$
, temos $v |_{\Gamma_1} = 0$:

$$\int_{\Gamma} v(\boldsymbol{x})\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})\cdot\boldsymbol{n}d\Gamma = -\int_{\Gamma_1} v(\boldsymbol{x})\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})\cdot\boldsymbol{n}d\Gamma - \int_{\Gamma_2} v(\boldsymbol{x})\sigma(\boldsymbol{x})\nabla\phi(\boldsymbol{x})\cdot\boldsymbol{n}d\Gamma$$

<0> + 0 + + ≥ +

Formulação Variacional

 $\bullet \bullet \circ$

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) d\Omega = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega - \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma$$

Como $v \in V$, temos $v|_{\Gamma_1} = 0$:

$$\int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma = -\int_{\Gamma_2} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma$$

- 《 伊 》 《 王 》

Formulação Variacional

 $\bullet \bullet \circ$

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) d\Omega = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega - \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma$$

Como $v \in V$, temos $v |_{\Gamma_1} = 0$: $\int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma = -\int_{\Gamma_2} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma$

Da condição de contorno em Γ_2 , $\nabla \phi \cdot \boldsymbol{n}|_{\Gamma_2} = 0$, logo

$$\int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma = 0$$

- < ⊡ > < ∃ >

Formulação Variacional

 $\bullet \bullet \circ$

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) d\Omega = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega - \int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} d\Gamma$$

Como
$$v \in V$$
, temos $v |_{\Gamma_1} = 0$:
$$\int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma = -\int_{\Gamma_2} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma$$

Da condição de contorno em Γ_2 , $\nabla \phi \cdot \boldsymbol{n}|_{\Gamma_2} = 0$, logo

$$\int_{\Gamma} v(\boldsymbol{x}) \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \boldsymbol{n} \, d\Gamma = 0$$

Assim,

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) \, d\Omega$$

Formulação Variacional

•••

Vimos que

Formulação Variacional

•••

Vimos que

$$-\int_{\Omega} \nabla \cdot (\sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x})) v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

< 🗗 > < E >

Formulação Variacional

 $\bullet \bullet \bullet$

Vimos que

$$\int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

< 🗗 > < E >

Formulação Variacional

Vimos que

$$\int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

Definindo

$$a(u,v) = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega \quad \ \mathbf{e} \quad F(v) = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) d\Omega,$$

Formulação Variacional

Vimos que

$$\int_{\Omega} \sigma(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) \, d\Omega = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \, d\Omega$$

Definindo

$$a(u,v) = \int_{\Omega} \sigma(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega \quad \ \mathbf{e} \quad F(v) = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) d\Omega,$$

podemos escrever a nova formulação como:

Formulação Variacional: encontrar
$$\phi \in V$$
 tal que $a(\phi, v) = F(v)$ $\forall v \in V$

$$V = \{ v \in H^1(\Omega) \mid v|_{\Gamma_1} = 0 \}$$

< □ ト < 三 >

Método de Galerkin

000

$$a(\phi, v) = F(v) \qquad \forall \ v \in V$$

<0×</1>

Método de Galerkin

 $\bullet \circ \circ$

$$a(\phi, v) = F(v) \qquad \forall v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin

 $\bullet \circ \circ$

$$a(\phi, v) = F(v) \qquad \forall v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin: encontrar $\phi_h \in V_h$ tal que $a(\phi_h, v_h) = F(v_h) \quad \forall v_h \in V_h$

Método de Galerkin

 $\bullet \circ \circ$

$$a(\phi, v) = F(v) \qquad \forall v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin: encontrar $\phi_h \in V_h$ tal que $a(\phi_h, v_h) = F(v_h) \quad \forall v_h \in V_h$

$$\phi_h \in V_h \Longrightarrow \phi_h(\boldsymbol{x}) = \sum_{j=1}^n \phi_j v_j(\boldsymbol{x})$$
 (*n* incógnitas)

- 세 문 🕨 🖉 🕨

Método de Galerkin

• • •

$$a(\phi, v) = F(v) \qquad \forall \ v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin: encontrar $\phi_h \in V_h$ tal que $a(\phi_h, v_h) = F(v_h) \qquad \forall v_h \in V_h$

$$\phi_h \in V_h \Longrightarrow \phi_h(\boldsymbol{x}) = \sum_{j=1}^n \phi_j v_j(\boldsymbol{x}) \qquad (n \text{ incógnitas})$$

Escolhendo $v_h = v_1, \ldots, v_n$, obtemos as seguintes *n* equações:

$$a(\phi_h, v_i) = F(v_i), \quad 1 \le i \le n$$

< *⊡* > < ∃ >

Método de Galerkin

$$a(\phi, v) = F(v) \qquad \forall v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin: encontrar $\phi_h \in V_h$ tal que $a(\phi_h, v_h) = F(v_h) \quad \forall v_h \in V_h$

$$\phi_h \in V_h \Longrightarrow \phi_h(\boldsymbol{x}) = \sum_{j=1}^n \phi_j v_j(\boldsymbol{x})$$
 (*n* incógnitas)

Escolhendo $v_h = v_1, \ldots, v_n$, obtemos as seguintes *n* equações:

$$a\left(\sum_{j=1}^{n}\phi_{j}v_{j}, v_{i}\right) = F(v_{i}), \quad 1 \le i \le n$$

Método de Galerkin

$$a(\phi, v) = F(v) \qquad \forall v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin: encontrar $\phi_h \in V_h$ tal que $a(\phi_h, v_h) = F(v_h) \quad \forall v_h \in V_h$

$$\phi_h \in V_h \Longrightarrow \phi_h(\boldsymbol{x}) = \sum_{j=1}^n \phi_j v_j(\boldsymbol{x})$$
 (*n* incógnitas)

Escolhendo $v_h = v_1, \ldots, v_n$, obtemos as seguintes *n* equações:

$$a\left(\sum_{j=1}^{n}\phi_{j}v_{j}, v_{i}\right) = F(v_{i}), \quad 1 \le i \le n$$

Método de Galerkin

 $\circ \circ \circ$

$$a(\phi, v) = F(v) \qquad \forall v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin: encontrar $\phi_h \in V_h$ tal que $a(\phi_h, v_h) = F(v_h) \qquad \forall v_h \in V_h$

$$\phi_h \in V_h \Longrightarrow \phi_h(\boldsymbol{x}) = \sum_{j=1}^n \phi_j v_j(\boldsymbol{x})$$
 (*n* incógnitas)

Escolhendo $v_h = v_1, \ldots, v_n$, obtemos as seguintes n equações:

$$\sum_{j=1}^{n} \phi_j a(v_j, v_i) = F(v_i) \quad 1 \le i \le n$$

< d⊇ > < ∃ >

Método de Galerkin

 $\circ \circ \circ$

$$a(\phi, v) = F(v) \qquad \forall v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin: encontrar $\phi_h \in V_h$ tal que $a(\phi_h, v_h) = F(v_h) \qquad \forall v_h \in V_h$

$$\phi_h \in V_h \Longrightarrow \phi_h(\boldsymbol{x}) = \sum_{j=1}^n \phi_j v_j(\boldsymbol{x})$$
 (*n* incógnitas)

Escolhendo $v_h = v_1, \ldots, v_n$, obtemos as seguintes n equações:

$$\sum_{j=1}^{n} a(v_j, v_i)\phi_j = F(v_i) \quad 1 \le i \le n$$

- + *a* > + = >

Método de Galerkin

 $\circ \circ \circ$

$$a(\phi, v) = F(v) \qquad \forall v \in V$$

Dados $v_1, v_2, \ldots v_n \in V$, L.I., defina $V_h \approx V$ como sendo

 $V_h = \text{span}\{v_1, \dots, v_n\} = \{u \in V \mid u(x) = u_1v_1(x) + \dots + u_nv_n(x)\}$

Método de Galerkin: encontrar $\phi_h \in V_h$ tal que $a(\phi_h, v_h) = F(v_h) \qquad \forall v_h \in V_h$

$$\phi_h \in V_h \Longrightarrow \phi_h(\boldsymbol{x}) = \sum_{j=1}^n \phi_j v_j(\boldsymbol{x})$$
 (*n* incógnitas)

Escolhendo $v_h = v_1, \ldots, v_n$, obtemos as seguintes n equações:

$$\sum_{j=1}^{n} a(v_j, v_i)\phi_j = F(v_i) \quad 1 \le i \le n$$

Au = b

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v) &= F(v) & \forall v \in V \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

< 🗗 > < E >

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

$$a(\phi, v_h) - a(\phi_h, v_h) = 0 \quad \forall \ v_h \in V_h$$

- + *a* > + = >

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$a(\phi, v_h) = F(v_h) \qquad \forall v_h \in V_h$$
$$a(\phi_h, v_h) = F(v_h) \qquad \forall v_h \in V_h$$
$$a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$$

- 세 윤 제 문 제

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$a(\phi, v_h) = F(v_h) \qquad \forall v_h \in V_h$$
$$a(\phi_h, v_h) = F(v_h) \qquad \forall v_h \in V_h$$
$$a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$$

Assim,

$$a(\phi - \phi_h, \phi - \phi_h) = a(\phi - \phi_h, \phi - v_h + v_h - \phi_h)$$

•••

<0×</1>
Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$a(\phi, v_h) = F(v_h) \qquad \forall v_h \in V_h$$
$$a(\phi_h, v_h) = F(v_h) \qquad \forall v_h \in V_h$$
$$a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$$

Assim,

$$a(\phi - \phi_h, \phi - \phi_h) = a(\phi - \phi_h, \phi - v_h) + a(\phi - \phi_h, v_h - \phi_h)$$

< @ > < ∃ >

Saulo P. Oliveira

Métodos de Elementos Finitos para as Equações de Maxwell 20/61

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

 $a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$

Assim,

$$a(\phi - \phi_h, \phi - \phi_h) = a(\phi - \phi_h, \phi - v_h) + a(\phi - \phi_h, v_h - \phi_h)$$

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

$$a(\phi - \phi_h, v_h) = 0 \quad \forall v_h \in V_h$$

Assim,

$$a(\phi - \phi_h, \phi - \phi_h) = a(\phi - \phi_h, \phi - v_h)$$

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

$$a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$$

Assim,

$$\begin{split} a(\phi-\phi_h,\phi-\phi_h) &= a(\phi-\phi_h,\phi-v_h) \\ \text{Sabendo que } a(u,u) \geq C_1 \|u\|_1^2 \quad \text{e} \quad a(u,v) \leq C_2 \|u\|_1 \|v\|_1, \end{split}$$

$$C_1 \|\phi - \phi_h\|_1^2 \le a(\phi - \phi_h, \phi - \phi_h)$$

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

$$a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$$

Assim,

$$\begin{split} a(\phi-\phi_h,\phi-\phi_h) &= a(\phi-\phi_h,\phi-v_h)\\ \text{Sabendo que } a(u,u) \geq C_1 \|u\|_1^2 \quad \text{e} \quad a(u,v) \leq C_2 \|u\|_1 \|v\|_1, \end{split}$$

$$C_1 \|\phi - \phi_h\|_1^2 \le a(\phi - \phi_h, \phi - v_h)$$

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

 $a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$

Assim,

$$a(\phi - \phi_h, \phi - \phi_h) = a(\phi - \phi_h, \phi - v_h)$$

Sabendo que $a(u, u) \ge C_1 ||u||_1^2$ e $a(u, v) \le C_2 ||u||_1 ||v||_1$,

 $C_1 \|\phi - \phi_h\|_1^2 \le a(\phi - \phi_h, \phi - v_h) \le C_2 \|\phi - \phi_h\|_1 \|\phi - v_h\|_1$

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

 $a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$

Assim,

$$a(\phi - \phi_h, \phi - \phi_h) = a(\phi - \phi_h, \phi - v_h)$$

Sabendo que $a(u, u) \ge C_1 ||u||_1^2$ e $a(u, v) \le C_2 ||u||_1 ||v||_1$,

 $C_1 \|\phi - \phi_h\|_1^2 \le C_2 \|\phi - \phi_h\|_1 \|\phi - v_h\|_1$

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

$$a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$$

Assim,

$$\begin{split} a(\phi - \phi_h, \phi - \phi_h) &= a(\phi - \phi_h, \phi - v_h) \\ \text{Sabendo que } a(u, u) &\geq C_1 \|u\|_1^2 \quad \text{e} \quad a(u, v) \leq C_2 \|u\|_1 \|v\|_1, \end{split}$$

$$C_1 \|\phi - \phi_h\|_1 \le C_2 \|\phi - v_h\|_1$$

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

$$a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$$

Assim,

$$\begin{split} a(\phi - \phi_h, \phi - \phi_h) &= a(\phi - \phi_h, \phi - v_h) \\ \text{Sabendo que } a(u, u) &\geq C_1 \|u\|_1^2 \quad \text{e} \quad a(u, v) \leq C_2 \|u\|_1 \|v\|_1, \\ \|\phi - \phi_h\|_1 \leq \frac{C_2}{C_1} \|\phi - v_h\|_1 \end{split}$$

Como $v_h \in V_h$ foi arbitrário,

→ @ ト + 돈 >

•••

Método de Galerkin

Relação entre $\phi \in \phi_h$?

$$\begin{aligned} a(\phi, v_h) &= F(v_h) & \forall v_h \in V_h \\ a(\phi_h, v_h) &= F(v_h) & \forall v_h \in V_h \end{aligned}$$

$$a(\phi - \phi_h, v_h) = 0 \qquad \forall v_h \in V_h$$

Assim,

$$\begin{aligned} a(\phi - \phi_h, \phi - \phi_h) &= a(\phi - \phi_h, \phi - v_h) \\ \text{Sabendo que } a(u, u) &\geq C_1 \|u\|_1^2 \quad \text{e} \quad a(u, v) \leq C_2 \|u\|_1 \|v\|_1, \\ \|\phi - \phi_h\|_1 \leq \frac{C_2}{C_1} \|\phi - v_h\|_1 \end{aligned}$$

Como $v_h \in V_h$ foi arbitrário,

$$\|\phi - \phi_h\|_1 \le \min_{v_h \in V_h} \frac{C_2}{C_1} \|\phi - v_h\|_1$$

Saulo P. Oliveira

Método de Galerkin

 $\bullet \bullet \bullet$

$$\|\phi - \phi_h\|_1 \le \min_{v_h \in V_h} \frac{C_2}{C_1} \|\phi - v_h\|_1$$

Método de Galerkin

 $\bullet \bullet \bullet$

$$\|\phi - \phi_h\|_1 \le \min_{v_h \in V_h} \frac{C_2}{C_1} \|\phi - v_h\|_1$$

- 《 🗇 🕨 - 🦉 🕨

Os métodos de elementos finitos escolhem as funções de base $N_1, \ldots N_n$ com base numa discretização do domínio Ω

Os métodos de elementos finitos escolhem as funções de base N_1, \ldots, N_n com base numa discretização do domínio Ω Seja $\Omega = [0, 1] \times [0, 1].$ Γ_2 Γ_1 F Γ_1

- < ⊡ > < ⊇ >

Os métodos de elementos finitos escolhem as funções de base $N_1, \ldots N_n$ com base numa discretização do domínio Ω

Os métodos de elementos finitos escolhem as funções de base $N_1, \ldots N_n$ com base numa discretização do domínio Ω

Associamos uma função de base a cada vértice (exceto em Γ_1)

Funções de base

• • •

Dados os vértices x_1, \ldots, x_n , escolhemos N_1, \ldots, N_n tais que:

- $N_i(\boldsymbol{x})$ é contínua;
- $N_i(x)|_{K_e} = N_i(x,y)|_{K_e} = a^e + b^e x + c^e y$ ($N_i|_{K_e}$ tem grau 1)

•
$$N_i(\boldsymbol{x}_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Funções de base

• • •

- $N_i(\boldsymbol{x})$ é contínua;
- $N_i(x)|_{K_e} = N_i(x,y)|_{K_e} = a^e + b^e x + c^e y$ ($N_i|_{K_e}$ tem grau 1)

•
$$N_i(\boldsymbol{x}_j) = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$$

Funções de base

• • •

- $N_i(\boldsymbol{x})$ é contínua;
- $N_i(x)|_{K_e} = N_i(x,y)|_{K_e} = a^e + b^e x + c^e y$ ($N_i|_{K_e}$ tem grau 1)

•
$$N_i(\boldsymbol{x}_j) = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$$

Funções de base

• • •

- $N_i(\boldsymbol{x})$ é contínua;
- $N_i(x)|_{K_e} = N_i(x,y)|_{K_e} = a^e + b^e x + c^e y$ ($N_i|_{K_e}$ tem grau 1)

•
$$N_i(\boldsymbol{x}_j) = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$$

Funções de base

• • •

- $N_i(\boldsymbol{x})$ é contínua;
- $N_i(x)|_{K_e} = N_i(x,y)|_{K_e} = a^e + b^e x + c^e y$ ($N_i|_{K_e}$ tem grau 1)

•
$$N_i(\boldsymbol{x}_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(x)$$
, sejam $f_1 = f(x_1), \dots, f_n = f(x_n)$ e $\tilde{f}(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_{n-1} N_{n-1}(x) + f_n N_n(x)$

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(\boldsymbol{x})$$
, sejam $f_1 = f(\boldsymbol{x}_1), \dots, f_n = f(\boldsymbol{x}_n)$ e

$$\tilde{f}(\boldsymbol{x}) = f_1 N_1(\boldsymbol{x}) + f_2 N_2(\boldsymbol{x}) + \ldots + f_{n-1} N_{n-1}(\boldsymbol{x}) + f_n N_n(\boldsymbol{x})$$

Temos que $\tilde{f} \in V_h$. Além disso,

< ⊡ > < ∃ >

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(\boldsymbol{x})$$
, sejam $f_1 = f(\boldsymbol{x}_1), \dots, f_n = f(\boldsymbol{x}_n)$ e
 $\tilde{f}(\boldsymbol{x}) = f_1 N_1(\boldsymbol{x}) + f_2 N_2(\boldsymbol{x}) + \dots + f_{n-1} N_{n-1}(\boldsymbol{x}) + f_n N_n(\boldsymbol{x})$
Temos que $\tilde{f} \in V_h$. Além disso,

 $\tilde{f}(\boldsymbol{x}_1) = f_1 N_1(\boldsymbol{x}_1) + f_2 N_2(\boldsymbol{x}_1) + \ldots + f_{n-1} N_{n-1}(\boldsymbol{x}_1) + f_n N_n(\boldsymbol{x}_1)$

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(x)$$
, sejam $f_1 = f(x_1), \dots, f_n = f(x_n)$ e
 $\tilde{f}(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_{n-1} N_{n-1}(x) + f_n N_n(x)$

Temos que $\tilde{f} \in V_h$. Além disso,

 $\tilde{f}(\boldsymbol{x}_1) = f_1(1) + f_2(0) + \ldots + f_{n-1}(0) + f_n(0)$

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(x)$$
, sejam $f_1 = f(x_1), \dots, f_n = f(x_n)$ e
 $\tilde{f}(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_{n-1} N_{n-1}(x) + f_n N_n(x)$

Temos que $\tilde{f} \in V_h$. Além disso,

$$\tilde{f}(\boldsymbol{x}_1) = f_1$$

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(x)$$
, sejam $f_1 = f(x_1), \dots, f_n = f(x_n)$ e
 $\tilde{f}(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_{n-1} N_{n-1}(x) + f_n N_n(x)$

Temos que $\tilde{f} \in V_h$. Além disso,

$$\tilde{f}(\boldsymbol{x}_1) = f(\boldsymbol{x}_1)$$

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(\boldsymbol{x})$$
, sejam $f_1 = f(\boldsymbol{x}_1), \dots, f_n = f(\boldsymbol{x}_n)$ e
 $\tilde{f}(\boldsymbol{x}) = f_1 N_1(\boldsymbol{x}) + f_2 N_2(\boldsymbol{x}) + \dots + f_{n-1} N_{n-1}(\boldsymbol{x}) + f_n N_n(\boldsymbol{x})$
Temos que $\tilde{f} \in V_h$. Além disso,

 $\tilde{f}(\boldsymbol{x}_2) = f_1 N_1(\boldsymbol{x}_2) + f_2 N_2(\boldsymbol{x}_2) + \ldots + f_{n-1} N_{n-1}(\boldsymbol{x}_2) + f_n N_n(\boldsymbol{x}_2)$

- 세 🗗 🕨 🖉 🕨

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(x)$$
, sejam $f_1 = f(x_1), \dots, f_n = f(x_n)$ e
 $\tilde{f}(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_{n-1} N_{n-1}(x) + f_n N_n(x)$

Temos que $\tilde{f} \in V_h$. Além disso,

 $\tilde{f}(\boldsymbol{x}_2) = f_1(0) + f_2(1) + \ldots + f_{n-1}(0) + f_n(0)$

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(x)$$
, sejam $f_1 = f(x_1), \dots, f_n = f(x_n)$ e
 $\tilde{f}(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_{n-1} N_{n-1}(x) + f_n N_n(x)$

Temos que $\tilde{f} \in V_h$. Além disso,

$$\tilde{f}(\boldsymbol{x}_2) = f_2$$

Funções de base

 $\bullet \bullet \circ$

Dada
$$f(x)$$
, sejam $f_1 = f(x_1), \dots, f_n = f(x_n)$ e $\tilde{f}(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_{n-1} N_{n-1}(x) + f_n N_n(x)$

Temos que $\tilde{f} \in V_h$. Além disso,

 $\tilde{f}(\boldsymbol{x}_2) = f(\boldsymbol{x}_2)$

Funcões de base

•••

Dada
$$f(x)$$
, sejam $f_1 = f(x_1), \dots, f_n = f(x_n)$ e
 $\tilde{f}(x) = f_1 N_1(x) + f_2 N_2(x) + \dots + f_{n-1} N_{n-1}(x) + f_n N_n(x)$
Temos que $\tilde{f} \in V_n$ Além disso

Temos que $f \in V_h$. Além disso,

 $\tilde{f}(\boldsymbol{x}_2) = f(\boldsymbol{x}_2)$

Em geral, $\tilde{f}(\boldsymbol{x}_i) = f(\boldsymbol{x}_i)$, ou seja, \tilde{f} interpola f em $\boldsymbol{x}_1, \dots, \boldsymbol{x}_n$

Funções de base

Dada
$$f(\boldsymbol{x})$$
, sejam $f_1 = f(\boldsymbol{x}_1), \dots, f_n = f(\boldsymbol{x}_n)$ e
 $\tilde{f}(\boldsymbol{x}) = f_1 N_1(\boldsymbol{x}) + f_2 N_2(\boldsymbol{x}) + \dots + f_{n-1} N_{n-1}(\boldsymbol{x}) + f_n N_n(\boldsymbol{x})$
Temos que $\tilde{f} \in V_h$. Além disso,

 $\tilde{f}(\boldsymbol{x}_2) = f(\boldsymbol{x}_2)$

Em geral, $\tilde{f}(\boldsymbol{x}_i) = f(\boldsymbol{x}_i)$, ou seja, \tilde{f} interpola f em $\boldsymbol{x}_1, \dots \boldsymbol{x}_n$

- 세 🗇 🕨 시 톤 🕨

•••

Funções de base

Dada
$$f(\boldsymbol{x})$$
, sejam $f_1 = f(\boldsymbol{x}_1), \dots, f_n = f(\boldsymbol{x}_n)$ e
 $\tilde{f}(\boldsymbol{x}) = f_1 N_1(\boldsymbol{x}) + f_2 N_2(\boldsymbol{x}) + \dots + f_{n-1} N_{n-1}(\boldsymbol{x}) + f_n N_n(\boldsymbol{x})$
Temos que $\tilde{f} \in V_h$. Além disso,

 $\tilde{f}(\boldsymbol{x}_2) = f(\boldsymbol{x}_2)$

Em geral, $\tilde{f}(\boldsymbol{x}_i) = f(\boldsymbol{x}_i)$, ou seja, \tilde{f} interpola f em $\boldsymbol{x}_1, \dots \boldsymbol{x}_n$

Saulo P. Oliveira

•••

Funções de base

 $\bullet \bullet \bullet$

Lembrando que

$$\|\phi - \phi_h\|_1 \le \min_{v_h \in V_h} \frac{C_2}{C_1} \|\phi - v_h\|_1,$$

< 🗗 > < E >

Funções de base

 $\bullet \bullet \bullet$

Lembrando que

$$\|\phi - \phi_h\|_1 \le \min_{v_h \in V_h} \frac{C_2}{C_1} \|\phi - v_h\|_1,$$

temos em particular que

$$\|\phi - \phi_h\|_1 \le \frac{C_2}{C_1} \|\phi - \tilde{\phi}\|_1$$
Método de Elementos Finitos

Funções de base

 $\bullet \bullet \bullet$

Lembrando que

$$\|\phi - \phi_h\|_1 \le \min_{v_h \in V_h} \frac{C_2}{C_1} \|\phi - v_h\|_1,$$

temos em particular que

$$\|\phi - \phi_h\|_1 \le \frac{C_2}{C_1} \|\phi - \tilde{\phi}\|_1$$

Assim, $\|\phi - \tilde{\phi}\|_1 \to 0 \Longrightarrow \|\phi - \phi_h\|_1 \to 0$

Saulo P. Oliveira

Método de Elementos Finitos

Implementação

Passos do método de elementos finitos:

- Geração da malha
- 2 Cálculos no elemento de referência
- Algoritmo de montagem
- Solução do sistema linear
- Visualização, pós-processamento

- 세 문 🕨 🖉 🕨

Pacote utilizado

Utilizaremos o pacote triangle :

Triangle: A Two-Dimensional Quality Mesh Generator and D...

http://www.cs.cmu.edu/~quake/triangle.html

A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.

Jonathan Richard Shewchuk Computer Science Division University of California at Berkeley Berkeley, California 94720-1776 jrs@cs.berkeley.edu

Dados relevantes / meios homogêneos

O gerador de malha deve fornecer:

- Número de vértices
- Coordenadas dos vértices
- Número de elementos (no caso, triângulos)
- Matriz de conectividade dos elementos
- Identificação dos vértices na fronteira

<u>Geração da malha</u>

Dados relevantes / arquivo gerador da malha do Exemplo 1

```
# quad.poly: geracao de uma malha em um dominio quadrado
#
# Numero de vertices, dimensao (2), numero de atributos e
# e numero de ident. de fronteira (1: Dirichlet: 2: Neumann)
4201
# Vertices
1001
2011
3111
4101
# Linhas (sobretudo do contorno)
4 1
1121
2231
3341
4411
#
# Numero de furos no dominio (seguido pelas coords)
0
# Numero de sub-regioes (seguido pelas coords)
                                                                       < 個⇒ < ∃⇒
0
                     Métodos de Elementos Finitos para as Equações de Maxwell
```

utilização do pacote triangle

Sintaxe (há mais opções): ./triangle -qANG -aA INPUT.poly

utilização do pacote triangle

Sintaxe (há mais opções):

./triangle -qANG -aA INPUT.poly

- ANG: ângulo mínimo dos triângulos (ex: 30 (30°))
- A: área máxima dos triângulos (ex: 0.01 (0.01u.a.))
- INPUT: nome do arquivo de entrada (extensão .poly)

utilização do pacote triangle

Sintaxe (há mais opções):

./triangle -qANG -aA INPUT.poly

- ANG: ângulo mínimo dos triângulos (ex: 30 (30°))
- A: área máxima dos triângulos (ex: 0.01 (0.01u.a.))
- INPUT: nome do arquivo de entrada (extensão .poly)

Aplicativo adicional para visualizar a malha gerada:

./showme INPUT.poly

Arquivos gerados

quad.1.node:	quad.1.ele:							
9 2 0 1								
	83	0						
2 0 1 1	1		8	3	5			
3 1 1 1	2		6	1	5			
4 1 0 1	3		5	9	2			
5 0.5 0.5 0	4		5	2	6			
6 0 0.5 1	5		5	1	7			
7 0.5 0 1			7	-				
8 1 0 5 1	6		(4	5			
0 1 0.5 1	7		5	4	8			
9 0.5 1 1	8		5	3	9			
# Generated by ./triangle -q -a0.2 quad.poly	# Ge	nera	ted by	./tri	angle -0	q -a0.2	quad.poly	

Arquivos gerados

quad.1.node:	quad.1.ele:						
9201							
1 0 0 1	8	3	0				
2 0 1 1		1		8	3	5	
3 1 1 1		2		6	1	5	
4 1 0 1		3		5	9	2	
5 0.5 0.5 0		4		5	2	6	
6 0 0.5 1		7		5	4	7	
7 0 5 0 1		5		5	1	(
7 0.5 0 1		6		7	4	5	
8 1 0.5 1		7		5	4	0	
9 0 5 1 1				Э	4	ð	
		8		5	3	9	
# Generatea by ./triangle -q -a0.2 quad.poly	#	Gen	erat	ed by	./trid	nale -	a -a0.2 auad.polv

Do arquivo quad.1.node:

- Número de vértices: 9
- Coordenadas dos vértices: $[0,0],[0,1],\ldots [0.5,1]$
- Identificação dos vértices na fronteira:
 [1, 1, 1, 1, 0, 1, 1, 1, 1]

- 4 🗇 > 4 Ξ >

Arquivos gerados

9	2	0	1								
	1		0	0		1					
	2		0	1		1					
	3		1	1		1					
	4		1	0		1					
	5		0.	5	0	5		0			
	6		0	0	.5		1				
	7		0.	5	0		1				
	8		1	0	.5		1				
	9		0.	5	1		1				
#	Gen	iera	te	dl	by	./†	tri	iangle	-q	-a0.2	quad.poly

quad.1.ele:

8	3	0			
	1		8	3	5
	2		6	1	5
	3		5	9	2
	4		5	2	6
	5		5	1	7
	6		7	4	5
	7		5	4	8
	8		5	3	9

Generated by ./triangle -q -a0.2 quad.poly

Do arquivo quad.1.node:

- Número de vértices: 9
- Coordenadas dos vértices: $[0,0], [0,1], \dots [0.5,1]$
- Identificação dos vértices na fronteira:
 [1, 1, 1, 1, 0, 1, 1, 1, 1]

Extração dos dados relevantes

- Número de elementos: 8
- Matriz de conectividade:

$$\mathbf{e}: \left[\begin{array}{rrrrr} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{array} \right]$$

Extração dos dados relevantes

- Número de elementos: 8
- Matriz de conectividade:

$$\mathbf{e}: \left[\begin{array}{ccccc} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{array} \right]$$

Extração dos dados relevantes

- Número de elementos: 8
- Matriz de conectividade:

$$\mathbf{e}: \left[\begin{array}{rrrrr} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{array} \right]$$

Extração dos dados relevantes

- Número de elementos: 8

Há uma transformação do triângulo \hat{K} para qualquer triângulo:

Há uma transformação do triângulo \hat{K} para qualquer triângulo:

O triângulo \hat{K} é definido por $\hat{x}_1 = (1,0), \ \hat{x}_2 = (0,1), \ \hat{x}_3 = (0,0)$

Há uma transformação do triângulo \hat{K} para qualquer triângulo:

O triângulo \hat{K} é definido por $\hat{x}_1 = (1,0), \ \hat{x}_2 = (0,1), \ \hat{x}_3 = (0,0)$

Vamos escrever a transformação na forma

$$\begin{cases} x(\hat{x},\hat{y}) = x_1 \hat{N}_1(\hat{x},\hat{y}) + x_2 \hat{N}_2(\hat{x},\hat{y}) + x_3 \hat{N}_3(\hat{x},\hat{y}) \\ y(\hat{x},\hat{y}) = y_1 \hat{N}_1(\hat{x},\hat{y}) + y_2 \hat{N}_2(\hat{x},\hat{y}) + y_3 \hat{N}_3(\hat{x},\hat{y}) \end{cases}$$

- 세 🗗 🕨 시 🖻 🕨

Há uma transformação do triângulo \hat{K} para qualquer triângulo:

O triângulo \hat{K} é definido por $\hat{x}_1 = (1,0), \ \hat{x}_2 = (0,1), \ \hat{x}_3 = (0,0)$

Vamos escrever a transformação na forma

$$\begin{cases} x(\hat{x}, \hat{y}) = x_1 \hat{N}_1(\hat{x}, \hat{y}) + x_2 \hat{N}_2(\hat{x}, \hat{y}) + x_3 \hat{N}_3(\hat{x}, \hat{y}) \\ y(\hat{x}, \hat{y}) = y_1 \hat{N}_1(\hat{x}, \hat{y}) + y_2 \hat{N}_2(\hat{x}, \hat{y}) + y_3 \hat{N}_3(\hat{x}, \hat{y}) \end{cases}$$

Vetorialmente, $m{x}(\hat{m{x}}) = m{x}_1 \hat{N}_1(\hat{m{x}}) + m{x}_2 \hat{N}_2(\hat{m{x}}) + m{x}_3 \hat{N}_3(\hat{m{x}})$

Funções de base locais

 $m{x}(\hat{m{x}}) = m{x}_1 \hat{N}_1(\hat{m{x}}) + m{x}_2 \hat{N}_2(\hat{m{x}}) + m{x}_3 \hat{N}_3(\hat{m{x}})$

•0

Funções de base locais

$$m{x}(\hat{m{x}}) = m{x}_1 \hat{N}_1(\hat{m{x}}) + m{x}_2 \hat{N}_2(\hat{m{x}}) + m{x}_3 \hat{N}_3(\hat{m{x}})$$

Para que $m{x}(\hat{m{x}}_1) = m{x}_1$, vamos impor $\hat{N}_1(\hat{m{x}}_1) = 1, \quad \hat{N}_2(\hat{m{x}}_1) = 0, \quad \hat{N}_3(\hat{m{x}}_1) = 0$

- < ∰ > < ≣ >

•0

Funções de base locais

$$m{x}(\hat{m{x}}) = m{x}_1 \hat{N}_1(\hat{m{x}}) + m{x}_2 \hat{N}_2(\hat{m{x}}) + m{x}_3 \hat{N}_3(\hat{m{x}})$$

Para que $oldsymbol{x}(\hat{oldsymbol{x}}_1) = oldsymbol{x}_1$, vamos impor

$$\hat{N}_1(\hat{\boldsymbol{x}}_1) = 1, \quad \hat{N}_2(\hat{\boldsymbol{x}}_1) = 0, \quad \hat{N}_3(\hat{\boldsymbol{x}}_1) = 0$$

Analogamente,

$$\begin{split} \boldsymbol{x}(\hat{\boldsymbol{x}}_2) &= \boldsymbol{x}_2 \Longrightarrow \hat{N}_1(\hat{\boldsymbol{x}}_2) = 0, \quad \hat{N}_2(\hat{\boldsymbol{x}}_2) = 1, \quad \hat{N}_3(\hat{\boldsymbol{x}}_2) = 0\\ \boldsymbol{x}(\hat{\boldsymbol{x}}_3) &= \boldsymbol{x}_3 \Longrightarrow \hat{N}_1(\hat{\boldsymbol{x}}_3) = 0, \quad \hat{N}_2(\hat{\boldsymbol{x}}_3) = 0, \quad \hat{N}_3(\hat{\boldsymbol{x}}_3) = 1 \end{split}$$

Saulo P. Oliveira

Métodos de Elementos Finitos para as Equações de Maxwell 34/61

Funções de base locais

Assim,

$$\hat{N}_i(\hat{\boldsymbol{x}}_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

< 🗗 > < E >

••

Saulo P. Oliveira

Funções de base locais

Assim,

$$\hat{N}_i(\hat{oldsymbol{x}}_j) = \left\{ egin{array}{cc} 1, & i=j \ 0, & i
eq j \end{array}
ight.$$

Seja $\hat{N}_1(\hat{x}) = \hat{N}_1(\hat{x}, \hat{y}) = a^1 + b^1 \hat{x} + c^1 \hat{y}$.

Funções de base locais

Assim,

$$\begin{split} \hat{N}_i(\hat{\boldsymbol{x}}_j) &= \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases} \\ \mathbf{Seja} \ \hat{N}_1(\hat{\boldsymbol{x}}) &= \hat{N}_1(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}) = a^1 + b^1 \hat{\boldsymbol{x}} + c^1 \hat{\boldsymbol{y}} \\ &\\ \hat{N}_1(\hat{\boldsymbol{x}}_1) = 1 \\ &\\ \hat{N}_1(\hat{\boldsymbol{x}}_2) = 0 \\ &\\ \hat{N}_1(\hat{\boldsymbol{x}}_3) = 0 \end{cases} \end{split}$$

 $\bullet \bullet$

- + *a* > + = >

Funções de base locais

Assim,

$$\begin{split} \hat{N}_i(\hat{x}_j) &= \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases} \\ \mathbf{Seja} \ \hat{N}_1(\hat{x}) &= \hat{N}_1(\hat{x}, \hat{y}) = a^1 + b^1 \hat{x} + c^1 \hat{y} \\ &\\ \hat{N}_1(1, 0) = 1 \\ &\\ \hat{N}_1(0, 1) = 0 \\ &\\ \hat{N}_1(0, 0) = 0 \end{cases} \end{split}$$

Funções de base locais

Assim,

$$\hat{N}_i(\hat{m{x}}_j) = \left\{ egin{array}{cc} 1, & i=j \ 0, & i
eq j \end{array}
ight.$$

Seja
$$\hat{N}_1(\hat{x}) = \hat{N}_1(\hat{x}, \hat{y}) = a^1 + b^1 \hat{x} + c^1 \hat{y}$$
.

$$\begin{cases}
a^1 + b^1(1) + c^1(0) = 1 \\
a^1 + b^1(0) + c^1(1) = 0 \\
a^1 + b^1(0) + c^1(0) = 0
\end{cases}$$

< (2) × (3) × (3) × (3)

Saulo P. Oliveira

Funções de base locais

Assim,

$$\hat{N}_{i}(\hat{x}_{j}) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
$$) = \hat{N}_{1}(\hat{x}, \hat{y}) = a^{1} + b^{1}\hat{x} + c^{1}\hat{y} .$$

Seja
$$\hat{N}_1(\hat{x}) = \hat{N}_1(\hat{x}, \hat{y}) = a^1 + b^1 \hat{x} + c^1 \hat{y}$$
 ,

$$\begin{cases}
a^1 + b^1 = 1 \\
a^1 + c^1 = 0 \\
a^1 = 0
\end{cases}$$

 $\bullet \bullet$

- + *a* > + = >

Funções de base locais

Assim,

$$\hat{N}_{i}(\hat{x}_{j}) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Seja $\hat{N}_{1}(\hat{x}) = \hat{N}_{1}(\hat{x}, \hat{y}) = a^{1} + b^{1}\hat{x} + c^{1}\hat{y} .$
$$\begin{cases} b^{1} = 1 \\ c^{1} = 0 \\ a^{1} = 0 \end{cases}$$

••

Funções de base locais

Assim,

$$\hat{N}_{i}(\hat{x}_{j}) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Seja $\hat{N}_{1}(\hat{x}) = \hat{N}_{1}(\hat{x}, \hat{y}) = a^{1} + b^{1}\hat{x} + c^{1}\hat{y} .$
$$\begin{cases} b^{1} = 1 \\ c^{1} = 0 \\ a^{1} = 0 \end{cases}$$

Portanto, $\hat{N}_1(\hat{x}, \hat{y}) = \hat{x}$.

Funções de base locais

Assim,

$$\hat{N}_i(\hat{x}_j) = \left\{ egin{array}{cc} 1, & i=j \\ 0, & i
eq j \end{array}
ight.$$

Seja $\hat{N}_1(\hat{x}) = \hat{N}_1(\hat{x}, \hat{y}) = a^1 + b^1 \hat{x} + c^1 \hat{y}$. $\begin{cases} b^1 = 1\\ c^1 = 0\\ a^1 = 0 \end{cases}$

Portanto, $\hat{N}_1(\hat{x}, \hat{y}) = \hat{x}$. Ao final, encontramos: $\hat{N}_1(\hat{x}, \hat{y}) = \hat{x}, \quad \hat{N}_2(\hat{x}, \hat{y}) = \hat{y}, \quad \hat{N}_3(\hat{x}, \hat{y}) = 1 - \hat{x} - \hat{y}.$

< 4 ∰ > < ∃ >

Funções de base locais

Assim,

$$\hat{N}_i(\hat{\boldsymbol{x}}_j) = \left\{ egin{array}{cc} 1, & i=j \\ 0, & i
eq j \end{array}
ight.$$

Seja $\hat{N}_1(\hat{x}) = \hat{N}_1(\hat{x}, \hat{y}) = a^1 + b^1 \hat{x} + c^1 \hat{y}$. $\begin{cases} b^1 = 1\\ c^1 = 0\\ a^1 = 0 \end{cases}$

Portanto, $\hat{N}_1(\hat{x}, \hat{y}) = \hat{x}$. Ao final, encontramos: $\hat{N}_1(\hat{x}, \hat{y}) = \hat{x}, \quad \hat{N}_2(\hat{x}, \hat{y}) = \hat{y}, \quad \hat{N}_3(\hat{x}, \hat{y}) = 1 - \hat{x} - \hat{y}.$

OBS: A transformação $\boldsymbol{x} = \boldsymbol{x}(\hat{\boldsymbol{x}})$ é linear, i.e.,

$$m{x}(\hat{m{x}}) = m{x}_1 \hat{N}_1(\hat{m{x}}) + m{x}_2 \hat{N}_2(\hat{m{x}}) + m{x}_3 \hat{N}_3(\hat{m{x}})$$

Funções de base locais

Assim,

$$\hat{N}_i(\hat{\boldsymbol{x}}_j) = \left\{ egin{array}{cc} 1, & i=j \\ 0, & i
eq j \end{array}
ight.$$

Seja $\hat{N}_1(\hat{x}) = \hat{N}_1(\hat{x}, \hat{y}) = a^1 + b^1 \hat{x} + c^1 \hat{y}$. $\begin{cases} b^1 = 1\\ c^1 = 0\\ a^1 = 0 \end{cases}$

Portanto, $\hat{N}_1(\hat{x}, \hat{y}) = \hat{x}$. Ao final, encontramos: $\hat{N}_1(\hat{x}, \hat{y}) = \hat{x}, \quad \hat{N}_2(\hat{x}, \hat{y}) = \hat{y}, \quad \hat{N}_3(\hat{x}, \hat{y}) = 1 - \hat{x} - \hat{y}.$

OBS: A transformação $\boldsymbol{x} = \boldsymbol{x}(\hat{\boldsymbol{x}})$ é linear, i.e.,

$$oldsymbol{x}(\hat{oldsymbol{x}}) = J_K \hat{oldsymbol{x}} + oldsymbol{x}_0$$

Relação entre N_i e \hat{N}_i

Sejam $\Omega = K$, $\Gamma = \Gamma_2 e \boldsymbol{x}(\hat{\boldsymbol{x}}) = J_K \hat{\boldsymbol{x}} + \boldsymbol{x}_0$.

<0> → 10 → <</td>

Relação entre N_i e \hat{N}_i

Sejam $\Omega = K$, $\Gamma = \Gamma_2 e x(\hat{x}) = J_K \hat{x} + x_0$. Neste caso, $V_h = \text{span}\{N_1, N_2, N_3\}$.

Relação entre N_i e \hat{N}_i

Sejam $\Omega = K$, $\Gamma = \Gamma_2 \mathbf{e} \mathbf{x}(\hat{\mathbf{x}}) = J_K \hat{\mathbf{x}} + \mathbf{x}_0$. Neste caso, $V_h = \operatorname{span}\{N_1, N_2, N_3\}$.

Temos que

$$N_i(\boldsymbol{x}_j) = \left\{ egin{array}{ccc} 1, & i=j \ 0, & i
eq j \end{array}
ight., \quad \hat{N}_i(\hat{oldsymbol{x}}_j) = \left\{ egin{array}{ccc} 1, & i=j \ 0, & i
eq j \end{array}
ight., \quad oldsymbol{x}(\hat{oldsymbol{x}}_j) = oldsymbol{x}_j$$
Relação entre N_i e \hat{N}_i

Sejam $\Omega = K$, $\Gamma = \Gamma_2 \mathbf{e} \mathbf{x}(\hat{\mathbf{x}}) = J_K \hat{\mathbf{x}} + \mathbf{x}_0$. Neste caso, $V_h = \operatorname{span}\{N_1, N_2, N_3\}$.

Temos que

$$N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, \quad \hat{N}_i(\hat{\boldsymbol{x}}_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Relação entre N_i e \hat{N}_i

Sejam $\Omega = K$, $\Gamma = \Gamma_2 \mathbf{e} \mathbf{x}(\hat{\mathbf{x}}) = J_K \hat{\mathbf{x}} + \mathbf{x}_0$. Neste caso, $V_h = \operatorname{span}\{N_1, N_2, N_3\}$.

Temos que

$$N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, \quad \hat{N}_i(\hat{\boldsymbol{x}}_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 $N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \hat{N}_i(\hat{\boldsymbol{x}}_j), \quad j = 1, 2, 3$

Relação entre N_i e \hat{N}_i

Sejam $\Omega = K$, $\Gamma = \Gamma_2 \mathbf{e} \mathbf{x}(\hat{\mathbf{x}}) = J_K \hat{\mathbf{x}} + \mathbf{x}_0$. Neste caso, $V_h = \operatorname{span}\{N_1, N_2, N_3\}$.

Temos que

$$N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, \quad \hat{N}_i(\hat{\boldsymbol{x}}_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \hat{N}_i(\hat{\boldsymbol{x}}_j), \quad j = 1, 2, 3$$

Como N_i e \hat{N}_i são lineares, $N_i(\boldsymbol{x}(\hat{\boldsymbol{x}})) = \hat{N}_i(\hat{\boldsymbol{x}})$.

< ⊡ > < ∃ >

Relação entre N_i e \hat{N}_i

Sejam $\Omega = K$, $\Gamma = \Gamma_2 e x(\hat{x}) = J_K \hat{x} + x_0$. Neste caso, $V_h = \text{span}\{N_1, N_2, N_3\}$.

Temos que

$$N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, \quad \hat{N}_i(\hat{\boldsymbol{x}}_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \hat{N}_i(\hat{\boldsymbol{x}}_j), \quad j = 1, 2, 3$$

Como N_i e \hat{N}_i são lineares, $N_i(\boldsymbol{x}(\hat{\boldsymbol{x}})) = \hat{N}_i(\hat{\boldsymbol{x}})$. Pode-se mostrar (Jin, 2003) que $\nabla N_i(\boldsymbol{x}(\hat{\boldsymbol{x}})) = J_K^{-1} \nabla \hat{N}_i(\hat{\boldsymbol{x}})$

Relação entre N_i e \hat{N}_i

Sejam $\Omega = K$, $\Gamma = \Gamma_2 e x(\hat{x}) = J_K \hat{x} + x_0$. Neste caso, $V_h = \text{span}\{N_1, N_2, N_3\}$.

Temos que

$$N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, \quad \hat{N}_i(\hat{\boldsymbol{x}}_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$N_i(\boldsymbol{x}(\hat{\boldsymbol{x}}_j)) = \hat{N}_i(\hat{\boldsymbol{x}}_j), \quad j = 1, 2, 3$$

Como N_i e \hat{N}_i são lineares, $N_i(\boldsymbol{x}(\hat{\boldsymbol{x}})) = \hat{N}_i(\hat{\boldsymbol{x}})$. Pode-se mostrar (Jin, 2003) que $\nabla N_i(\boldsymbol{x}(\hat{\boldsymbol{x}})) = J_K^{-1} \nabla \hat{N}_i(\hat{\boldsymbol{x}})$

Cálculo das Integrais

Vamos aproximar f(x) por $\tilde{f}(x) = \sum_{j=1}^{3} f_j N_j(x)$,

(十四) (十三)

Cálculo das Integrais

Vamos aproximar f(x) por $\tilde{f}(x) = \sum_{j=1}^{3} f_j N_j(x)$,

$$\int_{K} f(\boldsymbol{x}) N_{i}(\boldsymbol{x}) \, d\Omega \approx \sum_{j=1}^{3} f_{j} \int_{K} N_{j}(\boldsymbol{x}) N_{i}(\boldsymbol{x}) \, d\Omega$$

Cálculo das Integrais

Vamos aproximar f(x) por $\tilde{f}(x) = \sum_{j=1}^{3} f_j N_j(x)$,

$$\int_{K} f(\boldsymbol{x}) N_{i}(\boldsymbol{x}) \, d\Omega \approx \sum_{j=1}^{3} f_{j} \int_{\hat{K}} N_{j}(\boldsymbol{x}(\hat{\boldsymbol{x}})) N_{i}(\boldsymbol{x}(\hat{\boldsymbol{x}})) \, |J_{K}| d\hat{\Omega}$$

Cálculo das Integrais

Vamos aproximar f(x) por $\tilde{f}(x) = \sum_{j=1}^{3} f_j N_j(x)$,

$$\int_{K} f(\boldsymbol{x}) N_{i}(\boldsymbol{x}) \, d\Omega \approx \sum_{j=1}^{3} f_{j} \int_{\hat{K}} \hat{N}_{j}(\hat{\boldsymbol{x}}) \hat{N}_{i}(\hat{\boldsymbol{x}}) \, |J_{K}| d\hat{\Omega}$$

Cálculo das Integrais

Vamos aproximar f(x) por $\tilde{f}(x) = \sum_{j=1}^{3} f_j N_j(x)$,

$$\int_{K} f(\boldsymbol{x}) N_{i}(\boldsymbol{x}) \, d\Omega \approx \sum_{j=1}^{3} f_{j} \int_{\hat{K}} \hat{N}_{j}(\hat{\boldsymbol{x}}) \hat{N}_{i}(\hat{\boldsymbol{x}}) \, |J_{K}| d\hat{\Omega}$$

$$\hat{N}_1(\hat{x}, \hat{y}) = \hat{x}, \quad \hat{N}_2(\hat{x}, \hat{y}) = \hat{y}, \quad \hat{N}_3(\hat{x}, \hat{y}) = 1 - \hat{x} - \hat{y}.$$

- 《 伊 》 《 王 》

Cálculo das Integrais

Vamos aproximar f(x) por $\tilde{f}(x) = \sum_{j=1}^{3} f_j N_j(x)$,

$$\int_{K} f(\boldsymbol{x}) N_{i}(\boldsymbol{x}) \, d\Omega \approx \sum_{j=1}^{3} f_{j} \int_{\hat{K}} \hat{N}_{j}(\hat{\boldsymbol{x}}) \hat{N}_{i}(\hat{\boldsymbol{x}}) \, |J_{K}| d\hat{\Omega}$$

Por outro lado, tomando $\sigma(x) \mid_{K} \approx \sigma_{K}$,

$$\int_{K} \sigma(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega \approx \sigma_{K} \int_{\hat{K}} (J_{K}^{-1} \nabla \hat{N}_{j}(\hat{\boldsymbol{x}})) \cdot (J_{K}^{-1} \nabla \hat{N}_{i}(\hat{\boldsymbol{x}})) |J_{K}| d\hat{\Omega}$$

(十四) (十三)

Integração numérica

Visando automação, calculamos as integrais com quadraturas:

$$\int_{\hat{K}} \hat{N}_{j}(\hat{\boldsymbol{x}}) \hat{N}_{i}(\hat{\boldsymbol{x}}) |J_{K}| d\hat{\Omega} \approx \sum_{l=1}^{n_{int}} \hat{N}_{j}(\hat{\boldsymbol{p}}_{l}) \hat{N}_{i}(\hat{\boldsymbol{p}}_{l}) |J_{K}| w_{l}$$
$$\int_{\hat{K}} (J_{K}^{-1} \nabla \hat{N}_{j}(\hat{\boldsymbol{x}})) \cdot (J_{K}^{-1} \nabla \hat{N}_{i}(\hat{\boldsymbol{x}})) |J_{K}| d\hat{\Omega} \approx \sum_{l=1}^{n_{int}} (J_{K}^{-1} \nabla \hat{N}_{j}(\hat{\boldsymbol{p}}_{l}) \cdot (J_{K}^{-1} \nabla \hat{N}_{i}(\hat{\boldsymbol{p}}_{l})) |J_{K}| w_{l}$$

Integração numérica

Visando automação, calculamos as integrais com quadraturas:

$$\int_{\hat{K}} \hat{N}_{j}(\hat{\boldsymbol{x}}) \hat{N}_{i}(\hat{\boldsymbol{x}}) |J_{K}| d\hat{\Omega} \approx \sum_{l=1}^{n_{int}} \hat{N}_{j}(\hat{\boldsymbol{p}}_{l}) \hat{N}_{i}(\hat{\boldsymbol{p}}_{l}) |J_{K}| w_{l}$$
$$\int_{\hat{K}} (J_{K}^{-1} \nabla \hat{N}_{j}(\hat{\boldsymbol{x}})) \cdot (J_{K}^{-1} \nabla \hat{N}_{i}(\hat{\boldsymbol{x}})) |J_{K}| d\hat{\Omega} \approx \sum_{l=1}^{n_{int}} (J_{K}^{-1} \nabla \hat{N}_{j}(\hat{\boldsymbol{p}}_{l}) \cdot (J_{K}^{-1} \nabla \hat{N}_{i}(\hat{\boldsymbol{p}}_{l})) |J_{K}| w_{l}$$

OBS:

- Para funções de base de ordem mais alta, $|J_K| = |J_K(\hat{p}_l)|$.
- É possível usar $\hat{m{p}}_l = \hat{m{x}}_l$

Ex: elementos espectrais GLL (Komatitsch e Tromp, 1999)

< ₫ > < Ξ >

O algoritmo de montagem estende a técnica acima para malhas compostas por vários elementos

O algoritmo de montagem estende a técnica acima para malhas compostas por vários elementos

Fato 1: se a malha possui N_e elementos $K_1, \ldots K_{N_e}$,

$$\int_{\Omega} f(\boldsymbol{x}) \, d\Omega = \sum_{e=1}^{N_e} \int_{K_e} f(\boldsymbol{x}) \, d\Omega$$

→ @ ト + 돈 >

O algoritmo de montagem estende a técnica acima para malhas compostas por vários elementos

Fato 1: se a malha possui N_e elementos $K_1, \ldots K_{N_e}$,

$$\int_{\Omega} f(\boldsymbol{x}) \, d\Omega = \sum_{e=1}^{N_e} \int_{\hat{K}} f(\boldsymbol{x}(\hat{\boldsymbol{x}})) |J_{K_e}| \, d\hat{\Omega}$$

Sejam $N_1^e({\pmb x}), \, N_2^e({\pmb x}), \, N_3^e({\pmb x})$ as funções de base caso $\Omega = K^e$

Fato 2: as funções de base $N_1(x), \ldots N_n(x)$ são ligadas a $N_1^e(x), N_2^e(x), N_3^e(x)$ por meio da matriz de conectividade

Exemplo

 $\begin{array}{c} 2 \\ 6 \\ 1 \\ 1 \\ 7 \end{array}$

A função $N_5(\boldsymbol{x})$ restrita ao elemento K_1 satisfaz

 $N_5(x_5) = 1, \quad N_5(x_3) = 0, \quad N_5(x_8) = 0$

 $\circ \circ \circ$

Exemplo

A função $N_5(\boldsymbol{x})$ restrita ao elemento K_1 satisfaz

$$N_5(\boldsymbol{x}_5) = 1, \quad N_5(\boldsymbol{x}_3) = 0, \quad N_5(\boldsymbol{x}_8) = 0$$

A base local no elemento K_1 satisfaz

$$\begin{cases} N_1^1(\boldsymbol{x}_1^1) = 1, & N_1^1(\boldsymbol{x}_2^1) = 0, & N_1^1(\boldsymbol{x}_3^1) = 0\\ N_2^1(\boldsymbol{x}_1^1) = 0, & N_2^1(\boldsymbol{x}_2^1) = 1, & N_2^1(\boldsymbol{x}_3^1) = 0\\ N_3^1(\boldsymbol{x}_1^1) = 0, & N_3^1(\boldsymbol{x}_2^1) = 0, & N_3^1(\boldsymbol{x}_3^1) = 1 \end{cases}$$

< //>

000

Exemplo

Da matriz de conectividade

$$M = \begin{bmatrix} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{bmatrix},$$

•••

Exemplo

Da matriz de conectividade

$$M = \begin{bmatrix} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{bmatrix},$$

temos que

$$x_1^1 = x_8, \quad x_2^1 = x_3, \quad x_3^1 = x_5$$

Exemplo

Da matriz de conectividade

$$M = \begin{bmatrix} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{bmatrix},$$

temos que

$$m{x}_1^1 = m{x}_8, \quad m{x}_2^1 = m{x}_3, \quad m{x}_3^1 = m{x}_5$$

Substituindo na base local no elemento K_1 :

$$\left\{ \begin{array}{ll} N_1^1(\boldsymbol{x}_1^1) = 1, & N_1^1(\boldsymbol{x}_2^1) = 0, & N_1^1(\boldsymbol{x}_3^1) = 0 \\ N_2^1(\boldsymbol{x}_1^1) = 0, & N_2^1(\boldsymbol{x}_2^1) = 1, & N_2^1(\boldsymbol{x}_3^1) = 0 \\ N_3^1(\boldsymbol{x}_1^1) = 0, & N_3^1(\boldsymbol{x}_2^1) = 0, & N_3^1(\boldsymbol{x}_3^1) = 1 \end{array} \right.$$

 $\bullet \bullet \circ$

Exemplo

Da matriz de conectividade

$$M = \begin{bmatrix} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{bmatrix},$$

temos que

$$m{x}_1^1 = m{x}_8, \quad m{x}_2^1 = m{x}_3, \quad m{x}_3^1 = m{x}_5$$

Substituindo na base local no elemento K_1 :

$$\left\{ \begin{array}{ll} N_1^1(\boldsymbol{x}_8) = 1, & N_1^1(\boldsymbol{x}_3) = 0, & N_1^1(\boldsymbol{x}_5) = 0 \\ N_2^1(\boldsymbol{x}_8) = 0, & N_2^1(\boldsymbol{x}_3) = 1, & N_2^1(\boldsymbol{x}_5) = 0 \\ N_3^1(\boldsymbol{x}_8) = 0, & N_3^1(\boldsymbol{x}_3) = 0, & N_3^1(\boldsymbol{x}_5) = 1 \end{array} \right.$$

•••

Exemplo

Da matriz de conectividade

$$M = \begin{bmatrix} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{bmatrix},$$

temos que

$$x_1^1 = x_8, \quad x_2^1 = x_3, \quad x_3^1 = x_5$$

Substituindo na base local no elemento K_1 :

$$\left\{ \begin{array}{ll} N_1^1(\boldsymbol{x}_8) = 1, & N_1^1(\boldsymbol{x}_3) = 0, & N_1^1(\boldsymbol{x}_5) = 0 \\ N_2^1(\boldsymbol{x}_8) = 0, & N_2^1(\boldsymbol{x}_3) = 1, & N_2^1(\boldsymbol{x}_5) = 0 \\ N_3^1(\boldsymbol{x}_8) = 0, & N_3^1(\boldsymbol{x}_3) = 0, & N_3^1(\boldsymbol{x}_5) = 1 \end{array} \right.$$

Função $N_5(\boldsymbol{x})$: $N_5(\boldsymbol{x}_5) = 1$, $N_5(\boldsymbol{x}_3) = 0$, $N_5(\boldsymbol{x}_8) = 0$

(十四) (十三)

Da matriz de conectividade

$$M = \begin{bmatrix} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{bmatrix},$$

temos que

$$x_1^1 = x_8, \quad x_2^1 = x_3, \quad x_3^1 = x_5$$

Substituindo na base local no elemento K_1 :

$$\left\{ \begin{array}{ll} N_1^1(\boldsymbol{x}_8) = 1, & N_1^1(\boldsymbol{x}_3) = 0, & N_1^1(\boldsymbol{x}_5) = 0 \\ N_2^1(\boldsymbol{x}_8) = 0, & N_2^1(\boldsymbol{x}_3) = 1, & N_2^1(\boldsymbol{x}_5) = 0 \\ N_3^1(\boldsymbol{x}_8) = 0, & N_3^1(\boldsymbol{x}_3) = 0, & N_3^1(\boldsymbol{x}_5) = 1 \end{array} \right.$$

Conclusão: $N_5(\boldsymbol{x})|_{K_1} = N_3^1(\boldsymbol{x})$

▲ 伊 ト ▲ 三 ト

Exemplo

Da matriz de conectividade

$$M = \begin{bmatrix} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{bmatrix},$$

temos que

$$x_1^1 = x_8, \quad x_2^1 = x_3, \quad x_3^1 = x_5$$

Substituindo na base local no elemento K_1 :

$$\left\{ \begin{array}{ll} N_1^1(\boldsymbol{x}_8) = 1, & N_1^1(\boldsymbol{x}_3) = 0, & N_1^1(\boldsymbol{x}_5) = 0\\ N_2^1(\boldsymbol{x}_8) = 0, & N_2^1(\boldsymbol{x}_3) = 1, & N_2^1(\boldsymbol{x}_5) = 0\\ N_3^1(\boldsymbol{x}_8) = 0, & N_3^1(\boldsymbol{x}_3) = 0, & N_3^1(\boldsymbol{x}_5) = 1 \end{array} \right.$$

Conclusão: $N_{M_{3,1}}(x)|_{K_1} = N_3^1(x)$

(十四) (十三)

Da matriz de conectividade

$$M = \begin{bmatrix} 8 & 6 & 5 & \cdots & 5 \\ 3 & 1 & 9 & \cdots & 3 \\ 5 & 5 & 2 & \cdots & 9 \end{bmatrix},$$

temos que

$$x_1^1 = x_8, \quad x_2^1 = x_3, \quad x_3^1 = x_5$$

Substituindo na base local no elemento K_1 :

$$\left\{ \begin{array}{ll} N_1^1(\boldsymbol{x}_8) = 1, & N_1^1(\boldsymbol{x}_3) = 0, & N_1^1(\boldsymbol{x}_5) = 0 \\ N_2^1(\boldsymbol{x}_8) = 0, & N_2^1(\boldsymbol{x}_3) = 1, & N_2^1(\boldsymbol{x}_5) = 0 \\ N_3^1(\boldsymbol{x}_8) = 0, & N_3^1(\boldsymbol{x}_3) = 0, & N_3^1(\boldsymbol{x}_5) = 1 \end{array} \right.$$

Em geral: $N_{M_{i,e}}(\boldsymbol{x})|_{K_e} = N_i^e(\boldsymbol{x})$

Exemplo

A relação $N_{M_{i,e}}({m x})=N^e_i({m x})$ somente é válida se $\Gamma=\Gamma_2$

< **∂** > < ∃ >

•••

A relação $N_{M_{i,e}}({m x})=N^e_i({m x})$ somente é válida se $\Gamma=\Gamma_2$

Em geral, precisamos de um vetor (ID) que identifique se um vértice pertence a Γ_1 :

A relação $N_{M_{i,e}}({m x}) = N^e_i({m x})$ somente é válida se $\Gamma = \Gamma_2$

Em geral, precisamos de um vetor (ID) que identifique se um vértice pertence a Γ_1 :

$$N_{ID(M_{i,e})}(\boldsymbol{x}) = N_i^e(\boldsymbol{x})$$

A relação $N_{M_{i,e}}({m x})=N^e_i({m x})$ somente é válida se $\Gamma=\Gamma_2$

Em geral, precisamos de um vetor (ID) que identifique se um vértice pertence a Γ_1 :

$$N_{ID(M_{i,e})}(\boldsymbol{x}) = N_i^e(\boldsymbol{x})$$

Algoritmo de montagem:

para
$$e = 1 \dots N_e$$
:
para $i, j = 1 \dots 3$:
calcule $F(N_i^e) = \int_{K_e} f(\boldsymbol{x}) N_i^e(\boldsymbol{x}) d\Omega$
calcule $a(N_i^e, N_j^e) = \int_{K_e} \sigma(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) d\Omega$

J

Exemplo

Em geral, precisamos de um vetor (ID) que identifique se um vértice pertence a Γ_1 :

$$N_{ID(M_{i,e})}(oldsymbol{x}) = N_i^e(oldsymbol{x})$$

Algoritmo de montagem:

para
$$e = 1 \dots N_e$$
:
para $i, j = 1 \dots 3$:
calcule $F(N_i^e) = \sum_{j=1}^3 f_j^e \sum_{l=1}^{n_{int}} \hat{N}_j(\hat{p}_l) \hat{N}_i(\hat{p}_l) |J_K| w_l$
calcule $a(N_i^e, N_j^e) = \sigma_K \sum_{l=1}^{n_{int}} (J_K^{-1} \nabla \hat{N}_j(\hat{p}_l)) \cdot (J_K^{-1} \nabla \hat{N}_i(\hat{p}_l)) |J_K| w_l$

< ⊡ > < ∃ >

J

Exemplo

Em geral, precisamos de um vetor (ID) que identifique se um vértice pertence a Γ_1 :

$$N_{ID(M_{i,e})}(oldsymbol{x}) = N_i^e(oldsymbol{x})$$

Algoritmo de montagem:

para
$$e = 1 \dots N_e$$
:
para $i, j = 1 \dots 3$:
calcule $F(N_i^e) = \sum_{j=1}^3 f_j^e \sum_{l=1}^{n_{int}} \hat{N}_j(\hat{p}_l) \hat{N}_i(\hat{p}_l) |J_K| w_l$
calcule $a(N_i^e, N_j^e) = \sigma_K \sum_{l=1}^{n_{int}} (J_K^{-1} \nabla \hat{N}_j(\hat{p}_l)) \cdot (J_K^{-1} \nabla \hat{N}_i(\hat{p}_l)) |J_K| w_l$
se $I = ID(M_{i,e}) \neq 0$ e $J = ID(M_{j,e}) \neq 0$,

< ⊡ > < ∃ >

J

Exemplo

< ∃⇒

Em geral, precisamos de um vetor (ID) que identifique se um vértice pertence a Γ_1 :

$$N_{ID(M_{i,e})}(oldsymbol{x}) = N_i^e(oldsymbol{x})$$

Algoritmo de montagem:

para
$$e = 1 ... N_e$$
:
para $i, j = 1 ... 3$:
calcule $F(N_i^e) = \sum_{j=1}^3 f_j^e \sum_{l=1}^{n_{int}} \hat{N}_j(\hat{p}_l) \hat{N}_i(\hat{p}_l) |J_K| w_l$
calcule $a(N_i^e, N_j^e) = \sigma_K \sum_{l=1}^{n_{int}} (J_K^{-1} \nabla \hat{N}_j(\hat{p}_l)) \cdot (J_K^{-1} \nabla \hat{N}_i(\hat{p}_l)) |J_K| w_l$
se $I = ID(M_{i,e}) \neq 0$ e $J = ID(M_{j,e}) \neq 0$,
 $a(N_I, N_J) = a(N_I, N_J) + a(N_i^e, N_j^e)$
 $F(N_I) = F(N_I) + F(N_i^e)$

Método de Elementos Finitos

Exemplo 1: solução conhecida

$$\begin{cases} -\nabla \cdot (\nabla \phi(\boldsymbol{x})) &= \sin(\pi x) \sin(\pi y), \quad \boldsymbol{x} \in \Omega \\ \phi|_{\Gamma} &= 0 \end{cases}$$

Método de Elementos Finitos

Exemplo 1: solução conhecida

$$\begin{cases} -\nabla \cdot (\nabla \phi(\boldsymbol{x})) &= \sin(\pi x) \sin(\pi y), \quad \boldsymbol{x} \in \Omega \\ \phi|_{\Gamma} &= 0 \end{cases}$$

< A > < $\equiv \rightarrow$

Método de Elementos Finitos

Exemplo 1: solução conhecida

< 4 ∰ ► < Ξ →
Exemplo 1: solução conhecida

$$\begin{cases} -\nabla \cdot (\nabla \phi(\boldsymbol{x})) &= \sin(\pi x) \sin(\pi y), \quad \boldsymbol{x} \in \Omega \\ \phi|_{\Gamma} &= 0 \end{cases}$$

- < 🗇 ト < Ξ ト

Exemplo 2: potencial elétrico

•0

Exemplo 2: potencial elétrico

< 回 > < 三 >

Exemplo 2: potencial elétrico

< 4 ∰ ≥ < E 1

•0

Exemplo 3: potencial elétrico em meio heterogêneo

Vamos tomar
$$m{E}(m{x},t)=\hat{m{E}}(m{x})e^{-i\omega t},m{H}(m{x},t)=\hat{m{H}}(m{x})e^{-i\omega t},\dots$$

$$\nabla \times \boldsymbol{H} - \epsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$$
$$\mu \frac{\partial \boldsymbol{H}}{\partial t} + \nabla \times \boldsymbol{E} = \boldsymbol{0}$$
$$\nabla \cdot (\epsilon \boldsymbol{E}) = \rho$$
$$\nabla \cdot (\mu \boldsymbol{H}) = 0$$

Vamos tomar
$$m{E}(m{x},t)=\hat{m{E}}(m{x})e^{-i\omega t},m{H}(m{x},t)=\hat{m{H}}(m{x})e^{-i\omega t},\dots$$

$$\begin{aligned} \nabla \times (\hat{\boldsymbol{H}} e^{-i\omega t}) &- \epsilon \frac{\partial}{\partial t} (\hat{\boldsymbol{E}} e^{-i\omega t}) &= \hat{\boldsymbol{J}} e^{-i\omega t} \\ \mu \frac{\partial}{\partial t} (\hat{\boldsymbol{H}} e^{-i\omega t}) + \nabla \times (\hat{\boldsymbol{E}} e^{-i\omega t}) &= \boldsymbol{0} \\ \nabla \cdot (\epsilon \hat{\boldsymbol{E}} e^{-i\omega t}) &= \hat{\rho} e^{-i\omega t} \\ \nabla \cdot (\mu \hat{\boldsymbol{H}} e^{-i\omega t}) &= 0 \end{aligned}$$

Vamos tomar
$$m{E}(m{x},t)=\hat{m{E}}(m{x})e^{-i\omega t},m{H}(m{x},t)=\hat{m{H}}(m{x})e^{-i\omega t},\dots$$

$$e^{-i\omega t} \nabla \times \hat{H} - \epsilon \hat{E} \frac{\partial}{\partial t} (e^{-i\omega t}) = \hat{J} e^{-i\omega t}$$
$$\mu \hat{H} \frac{\partial}{\partial t} (e^{-i\omega t}) + e^{-i\omega t} \nabla \times \hat{E} = \mathbf{0}$$
$$e^{-i\omega t} \nabla \cdot (\epsilon \hat{E}) = \hat{\rho} e^{-i\omega t}$$
$$e^{-i\omega t} \nabla \cdot (\mu \hat{H}) = \mathbf{0}$$

Vamos tomar
$$E(x,t) = \hat{E}(x)e^{-i\omega t}, H(x,t) = \hat{H}(x)e^{-i\omega t}, \dots$$

 $e^{-i\omega t}\nabla \times \hat{H} + i\omega\epsilon\hat{E}e^{-i\omega t} = \hat{J}e^{-i\omega t}$
 $-i\omega\mu\hat{H}e^{-i\omega t} + e^{-i\omega t}\nabla \times \hat{E} = 0$
 $e^{-i\omega t}\nabla \cdot (\epsilon\hat{E}) = \hat{\rho}e^{-i\omega t}$
 $e^{-i\omega t}\nabla \cdot (\mu\hat{H}) = 0$

Vamos tomar
$$E(x,t) = \hat{E}(x)e^{-i\omega t}, H(x,t) = \hat{H}(x)e^{-i\omega t}, \dots$$

 $\nabla \times \hat{H} + i\omega\epsilon\hat{E} = \hat{J}$
 $-i\omega\mu\hat{H} + \nabla \times \hat{E} = 0$
 $\nabla \cdot (\epsilon\hat{E}) = \hat{\rho}$
 $\nabla \cdot (\mu\hat{H}) = 0$

Vamos tomar
$$E(x,t) = \hat{E}(x)e^{-i\omega t}, H(x,t) = \hat{H}(x)e^{-i\omega t}, \dots$$

 $\nabla \times \hat{H} + i\omega\epsilon\hat{E} = \hat{J}$
 $-i\omega\mu\hat{H} + \nabla \times \hat{E} = 0$
 $\nabla \cdot (\epsilon\hat{E}) = \hat{\rho}$
 $\nabla \cdot (\mu\hat{H}) = 0$

Seguindo Monk (2003), $\hat{J} = \sigma \hat{E} + \hat{J}_a$ \hat{J}_a : densidade da fonte externa de corrente

$$abla imes \hat{H} + i\omega\epsilon\hat{E} = \hat{J}$$

- 《 🗗 🕨 《 튼)

Vamos tomar
$$E(x,t) = \hat{E}(x)e^{-i\omega t}, H(x,t) = \hat{H}(x)e^{-i\omega t}, \dots$$

 $\nabla \times \hat{H} + i\omega\epsilon\hat{E} = \hat{J}$
 $-i\omega\mu\hat{H} + \nabla \times \hat{E} = 0$
 $\nabla \cdot (\epsilon\hat{E}) = \hat{\rho}$
 $\nabla \cdot (\mu\hat{H}) = 0$

Seguindo Monk (2003), $\hat{J} = \sigma \hat{E} + \hat{J}_a$ \hat{J}_a : densidade da fonte externa de corrente

$$\nabla \times \hat{\boldsymbol{H}} + i\omega\epsilon\hat{\boldsymbol{E}} = \sigma\hat{\boldsymbol{E}} + \hat{\boldsymbol{J}}_a$$

- 《 🗗 🕨 - (톤)

Vamos tomar
$$E(x,t) = \hat{E}(x)e^{-i\omega t}, H(x,t) = \hat{H}(x)e^{-i\omega t}, \dots$$

 $\nabla \times \hat{H} + i\omega\epsilon\hat{E} = \hat{J}$
 $-i\omega\mu\hat{H} + \nabla \times \hat{E} = 0$
 $\nabla \cdot (\epsilon\hat{E}) = \hat{\rho}$
 $\nabla \cdot (\mu\hat{H}) = 0$

Seguindo Monk (2003), $\hat{J} = \sigma \hat{E} + \hat{J}_a$ \hat{J}_a : densidade da fonte externa de corrente

$$abla imes \hat{oldsymbol{H}} + i\omega(\epsilon + i\sigma/\omega)\hat{oldsymbol{E}} = \widehat{oldsymbol{J}}_a$$

- 《 🗇 🕨 - (톤)

Sistema de Maxwell harmônico de Primeira Ordem

$$\begin{cases} \nabla \times \hat{\boldsymbol{E}} - i\omega\mu\hat{\boldsymbol{H}} &= 0\\ i\omega(\epsilon + i\sigma/\omega)\hat{\boldsymbol{E}} + \nabla \times \hat{\boldsymbol{H}} &= \hat{\boldsymbol{J}}_a \end{cases}, \quad \begin{cases} \nabla \cdot (\epsilon\hat{\boldsymbol{E}}) &= \hat{\rho}\\ \nabla \cdot (\mu\hat{\boldsymbol{H}}) &= 0 \end{cases}$$

Sistema de Maxwell harmônico de Primeira Ordem

$$\begin{cases} \nabla \times \hat{\boldsymbol{E}} - i\omega\mu\hat{\boldsymbol{H}} &= 0\\ i\omega(\epsilon + i\sigma/\omega)\hat{\boldsymbol{E}} + \nabla \times \hat{\boldsymbol{H}} &= \hat{\boldsymbol{J}}_a \end{cases}, \quad \begin{cases} \nabla \cdot (\epsilon\hat{\boldsymbol{E}}) &= \hat{\rho}\\ \nabla \cdot (\mu\hat{\boldsymbol{H}}) &= 0 \end{cases}$$

Vamos eliminar o campo magnético:

$$\left\{ \begin{array}{rll} \nabla\times\hat{\pmb{E}}&=i\omega\mu\hat{\pmb{H}}&\nabla\times\mu^{-1}\ast\\ i\omega(\epsilon+i\sigma/\omega)\hat{\pmb{E}}+\nabla\times\hat{\pmb{H}}&=\hat{\pmb{J}}_{a}&i\omega\ast \end{array} \right.$$

Sistema de Maxwell harmônico de Primeira Ordem

$$\begin{cases} \nabla \times \hat{\boldsymbol{E}} - i\omega\mu\hat{\boldsymbol{H}} &= 0\\ i\omega(\epsilon + i\sigma/\omega)\hat{\boldsymbol{E}} + \nabla \times \hat{\boldsymbol{H}} &= \hat{\boldsymbol{J}}_a \end{cases}, \quad \begin{cases} \nabla \cdot (\epsilon\hat{\boldsymbol{E}}) &= \hat{\rho}\\ \nabla \cdot (\mu\hat{\boldsymbol{H}}) &= 0 \end{cases}$$

Vamos eliminar o campo magnético:

$$\begin{cases} \nabla \times (\mu^{-1} \nabla \times \hat{\boldsymbol{E}}) &= i \omega \nabla \times \hat{\boldsymbol{H}} \\ -\omega^2 (\epsilon + i \sigma / \omega) \hat{\boldsymbol{E}} + i \omega \nabla \times \hat{\boldsymbol{H}} &= i \omega \hat{\boldsymbol{J}}_a \end{cases}$$

Sistema de Maxwell harmônico de Primeira Ordem

$$\left\{ \begin{array}{ccc} \nabla\times\hat{\pmb{E}}-i\omega\mu\hat{\pmb{H}}&=0\\ i\omega(\epsilon+i\sigma/\omega)\hat{\pmb{E}}+\nabla\times\hat{\pmb{H}}&=\hat{\pmb{J}}_a \end{array} \right., \quad \left\{ \begin{array}{ccc} \nabla\cdot(\epsilon\hat{\pmb{E}})&=\hat{\rho}\\ \nabla\cdot(\mu\hat{\pmb{H}})&=0 \end{array} \right.$$

Vamos eliminar o campo magnético:

$$-\omega^2(\epsilon + i\sigma/\omega)\hat{E} + \nabla \times (\mu^{-1}\nabla \times \hat{E}) = i\omega\hat{J}_a$$

(十日) (十日)

Sistema de Maxwell harmônico de Primeira Ordem

$$\begin{cases} \nabla \times \hat{\boldsymbol{E}} - i\omega\mu\hat{\boldsymbol{H}} &= 0\\ i\omega(\epsilon + i\sigma/\omega)\hat{\boldsymbol{E}} + \nabla \times \hat{\boldsymbol{H}} &= \hat{\boldsymbol{J}}_a \end{cases}, \quad \begin{cases} \nabla \cdot (\epsilon\hat{\boldsymbol{E}}) &= \hat{\rho}\\ \nabla \cdot (\mu\hat{\boldsymbol{H}}) &= 0 \end{cases}$$

Vamos eliminar o campo magnético:

$$-\omega^2(\epsilon + i\sigma/\omega)\hat{E} + \nabla \times (\mu^{-1}\nabla \times \hat{E}) = i\omega\hat{J}_a$$

Sistema de Maxwell de Segunda Ordem

$$\nabla\times(\mu^{-1}\nabla\times\hat{\pmb{E}})-\omega^{2}\tilde{\epsilon}\hat{\pmb{E}}=\hat{\pmb{F}}$$

$$\hat{F} = i\omega \hat{J}_a, \quad \tilde{\epsilon} = \epsilon + i \frac{\sigma}{\omega}$$

OBS: convém normalizar as equações com respeito às constantes no vácuo (ϵ_0, μ_0)

Saulo P. Oliveira

Métodos de Elementos Finitos para as Equações de Maxwell 47/61

Formulação variacional

•0

Consideremos o seguinte problema:

$$\left\{egin{array}{ll}
abla imes (\mu^{-1}
abla imes oldsymbol{E}) - \omega^2 ilde{\epsilon} oldsymbol{E} &= oldsymbol{F}, & oldsymbol{x} \in \Omega \ oldsymbol{E} imes oldsymbol{n} &= oldsymbol{0}, & oldsymbol{x} \in \Gamma \end{array}
ight.$$

< 4 ₽ > < E >

Formulação variacional

Consideremos o seguinte problema:

$$\left\{ egin{array}{ll}
abla imes (\mu^{-1}
abla imes oldsymbol{E}) - \omega^2 \widetilde{\epsilon} oldsymbol{E} &= oldsymbol{F}, & oldsymbol{x} \in \Omega \ oldsymbol{E} imes oldsymbol{n} &= oldsymbol{0}, & oldsymbol{x} \in \Gamma \end{array}
ight.$$

Sejam

 $\begin{aligned} H(\operatorname{curl},\Omega) &= \{ \boldsymbol{E}: \Omega \to \mathbb{C}^3; \ \nabla \times \boldsymbol{E} \in L^2(\Omega) \times L^2(\Omega) \times L^2(\Omega) \} \\ V &= \{ \boldsymbol{E} \in H(\operatorname{curl},\Omega); \ \boldsymbol{E} \times \boldsymbol{n} = \boldsymbol{0} \ \text{ sobre } \Gamma \} \end{aligned}$ Produto Interno complexo

$$(\boldsymbol{u},\boldsymbol{v}) = \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} \; d\Omega = \int_{\Omega} \overline{\boldsymbol{v}}^T \boldsymbol{u} \; d\Omega$$

< 4 ₽ > < E >

Formulação variacional

Consideremos o seguinte problema:

$$\left\{ egin{array}{ll}
abla imes (\mu^{-1}
abla imes oldsymbol{E}) - \omega^2 \widetilde{\epsilon} oldsymbol{E} &= oldsymbol{F}, & oldsymbol{x} \in \Omega \ oldsymbol{E} imes oldsymbol{n} &= oldsymbol{0}, & oldsymbol{x} \in \Gamma \end{array}
ight.$$

Sejam

$$\begin{split} H(\operatorname{curl},\Omega) &= \{ \boldsymbol{E}: \Omega \to \mathbb{C}^3; \ \nabla \times \boldsymbol{E} \in L^2(\Omega) \times L^2(\Omega) \times L^2(\Omega) \} \\ V &= \{ \boldsymbol{E} \in H(\operatorname{curl},\Omega); \ \boldsymbol{E} \times \boldsymbol{n} = \boldsymbol{0} \ \text{ sobre } \Gamma \} \end{split}$$

Produto Interno complexo

$$(\boldsymbol{u},\boldsymbol{v}) = \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} \ d\Omega = \int_{\Omega} \overline{\boldsymbol{v}}^T \boldsymbol{u} \ d\Omega$$

Fazendo o produto interno com $v \in V$,

$$(
abla imes (\mu^{-1}
abla imes oldsymbol{E}), oldsymbol{v}) - \omega^2 (ilde{oldsymbol{e}} oldsymbol{E}, oldsymbol{v}) = (oldsymbol{F}, oldsymbol{v})$$

< 回 > < 巨 >

Formulação variacional

 $\bullet \bullet$

Teorema de Stokes em \mathbb{R}^3 :

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega + \int_{\Gamma} (\boldsymbol{n} \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Gamma$$

~ @ > < 돈 >

Formulação variacional

 $\bullet \bullet$

Teorema de Stokes em \mathbb{R}^3 :

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega + \int_{\Gamma} (\boldsymbol{n} \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Gamma$$

Como $\boldsymbol{n} \times \boldsymbol{u} = \boldsymbol{0}$ em Γ ,

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega$$

< 4 ₽ > < E >

Formulação variacional

 $\bullet \bullet$

Teorema de Stokes em \mathbb{R}^3 :

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega + \int_{\Gamma} (\boldsymbol{n} \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Gamma$$

Como $\boldsymbol{n} \times \boldsymbol{u} = \boldsymbol{0}$ em Γ ,

 $(\nabla \times \boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u}, \nabla \times \boldsymbol{v})$

< 4 ₽ > < E >

Formulação variacional

 $\bullet \bullet$

Teorema de Stokes em \mathbb{R}^3 :

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega + \int_{\Gamma} (\boldsymbol{n} \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Gamma$$

Como $\boldsymbol{n} \times \boldsymbol{u} = \boldsymbol{0}$ em Γ ,

$$(\nabla imes oldsymbol{u}, oldsymbol{v}) = (oldsymbol{u},
abla imes oldsymbol{v})$$

Tomando $\boldsymbol{u} = \mu^{-1} \nabla \times \boldsymbol{E}$

$$(\nabla \times \boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u}, \nabla \times \boldsymbol{v})$$

- 《 伊 》 《 王 》

Formulação variacional

••

Teorema de Stokes em \mathbb{R}^3 :

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega + \int_{\Gamma} (\boldsymbol{n} \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Gamma$$

Como ${m n} imes {m u} = {m 0}$ em Γ ,

$$(
abla imes oldsymbol{u}, oldsymbol{v}) = (oldsymbol{u},
abla imes oldsymbol{v})$$

Tomando $\boldsymbol{u} = \mu^{-1} \nabla \times \boldsymbol{E}$

$$(\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}), \boldsymbol{v}) = (\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v})$$

(十日) (十日)

Formulação variacional

 $\bullet \bullet$

Teorema de Stokes em \mathbb{R}^3 :

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega + \int_{\Gamma} (\boldsymbol{n} \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Gamma$$

Como $\boldsymbol{n} \times \boldsymbol{u} = \boldsymbol{0}$ em Γ ,

$$(\nabla \times \boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u}, \nabla \times \boldsymbol{v})$$

Tomando $\boldsymbol{u} = \mu^{-1} \nabla \times \boldsymbol{E}$

$$(\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}), \boldsymbol{v}) = (\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v})$$

$$(\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}), \boldsymbol{v}) - \omega^2 (\tilde{\epsilon} \boldsymbol{E}, \boldsymbol{v}) = (\boldsymbol{F}, \boldsymbol{v})$$

Formulação variacional

 $\bullet \bullet$

Teorema de Stokes em \mathbb{R}^3 :

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega + \int_{\Gamma} (\boldsymbol{n} \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Gamma$$

Como $\boldsymbol{n} \times \boldsymbol{u} = \boldsymbol{0}$ em Γ ,

$$(
abla imes oldsymbol{u}, oldsymbol{v}) = (oldsymbol{u},
abla imes oldsymbol{v})$$

Tomando $\boldsymbol{u} = \mu^{-1} \nabla \times \boldsymbol{E}$

$$(\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}), \boldsymbol{v}) = (\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v})$$

$$(\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v}) - \omega^2 (\tilde{\epsilon} \boldsymbol{E}, \boldsymbol{v}) = (\boldsymbol{F}, \boldsymbol{v})$$

Formulação variacional

••

Teorema de Stokes em \mathbb{R}^3 :

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \, d\Omega + \int_{\Gamma} (\boldsymbol{n} \times \boldsymbol{u}) \cdot \boldsymbol{v} \, d\Gamma$$

Como $\boldsymbol{n} \times \boldsymbol{u} = \boldsymbol{0}$ em Γ ,

$$(
abla imes oldsymbol{u},oldsymbol{v}) = (oldsymbol{u},
abla imes oldsymbol{v})$$

Tomando $\boldsymbol{u} = \mu^{-1} \nabla \times \boldsymbol{E}$

$$(\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}), \boldsymbol{v}) = (\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v})$$

$$(\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v}) - \omega^2 (\tilde{\epsilon} \boldsymbol{E}, \boldsymbol{v}) = (\boldsymbol{F}, \boldsymbol{v})$$

Formulação Variacional: encontrar $E \in V$ tal que

$$(\mu^{-1}
abla imes oldsymbol{E},
abla imes oldsymbol{v}) - \omega^2 (ilde{\epsilon} oldsymbol{E}, oldsymbol{v}) = (oldsymbol{F}, oldsymbol{v}) \quad orall oldsymbol{v} \in V$$

Saulo P. Oliveira

Formulação variacional no plano

• • •

Para adaptar a formulação a \mathbb{R}^2 , vamos considerar

$$\boldsymbol{u} = \boldsymbol{u}(x,y) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix}, \quad \boldsymbol{v} = \boldsymbol{v}(x,y) = \begin{bmatrix} v_1 \\ v_2 \\ 0 \end{bmatrix},$$

< 4 ₽ > < E >

Formulação variacional no plano

• • •

Para adaptar a formulação a \mathbb{R}^2 , vamos considerar

$$\boldsymbol{u} = \boldsymbol{u}(x,y) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix}, \qquad \boldsymbol{v} = \boldsymbol{v}(x,y) = \begin{bmatrix} v_1 \\ v_2 \\ 0 \end{bmatrix},$$

Temos que

$$\boldsymbol{u} \times \boldsymbol{v} = \begin{bmatrix} 0 \\ 0 \\ u_2 v_1 - u_1 v_2 \end{bmatrix},$$

Formulação variacional no plano

• • •

▶ 4 ∃ ▶

Para adaptar a formulação a \mathbb{R}^2 , vamos considerar

$$\boldsymbol{u} = \boldsymbol{u}(x,y) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix}, \quad \boldsymbol{v} = \boldsymbol{v}(x,y) = \begin{bmatrix} v_1 \\ v_2 \\ 0 \end{bmatrix},$$

Temos que

$$oldsymbol{u} imes oldsymbol{v} = \begin{bmatrix} 0 \\ 0 \\ u_2 v_1 - u_1 v_2 \end{bmatrix}, \
abla imes oldsymbol{u} = \begin{bmatrix} 0 \\ 0 \\ rac{\partial u_2}{\partial x} - rac{\partial u_1}{\partial y} \end{bmatrix},$$

Formulação variacional no plano

• • •

0 /

Para adaptar a formulação a \mathbb{R}^2 , vamos considerar

$$\boldsymbol{u} = \boldsymbol{u}(x,y) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix}, \quad \boldsymbol{v} = \boldsymbol{v}(x,y) = \begin{bmatrix} v_1 \\ v_2 \\ 0 \end{bmatrix},$$

Temos que

$$\boldsymbol{u} \times \boldsymbol{v} = \begin{bmatrix} 0\\0\\u_2v_1 - u_1v_2 \end{bmatrix}, \ \nabla \times \boldsymbol{u} = \begin{bmatrix} 0\\0\\\frac{\partial u_2}{\partial x} - \frac{\partial u_1}{\partial y} \end{bmatrix}, \ \nabla \times \begin{bmatrix} 0\\0\\\phi \end{bmatrix} = \begin{bmatrix} \frac{\partial \phi}{\partial y}\\-\frac{\partial \phi}{\partial x}\\0 \end{bmatrix}$$

Por isso, são adotadas as seguintes notações

$$\boldsymbol{u} \times \boldsymbol{v} = u_2 v_1 - u_1 v_2, \quad \nabla \times \boldsymbol{u} = \frac{\partial u_2}{\partial x} - \frac{\partial u_1}{\partial y}, \quad \nabla \times \phi = \left[\frac{\partial \phi}{\partial y}, -\frac{\partial \phi}{\partial x}\right]^T$$

Formulação variacional no plano

 $\bullet \bullet \circ$

Teorema de Stokes em \mathbb{R}^3 com $\boldsymbol{u} = [0, 0, \xi]^T, \boldsymbol{v} \in V$:

$$\int_{\Omega} (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} \ d\Omega = \int_{\Omega} \boldsymbol{u} \cdot (\nabla \times \boldsymbol{v}) \ d\Omega$$

Formulação variacional no plano

 $\bullet \bullet \circ$

Teorema de Stokes em \mathbb{R}^3 com $\boldsymbol{u} = [0, 0, \xi]^T, \boldsymbol{v} \in V$:

$$\int_{\Omega} (\nabla \times \xi) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \overline{\nabla \times \boldsymbol{v}} \, \xi \, d\Omega$$

< ⊡ > < ∃ >

Formulação variacional no plano

 $\bullet \bullet \circ$

Teorema de Stokes em \mathbb{R}^3 com $\boldsymbol{u} = [0, 0, \xi]^T, \boldsymbol{v} \in V$:

$$\int_{\Omega} (\nabla \times \xi) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \overline{\nabla \times \boldsymbol{v}} \, \xi \, d\Omega$$

Escolhendo $\xi = \mu^{-1} \nabla \times \boldsymbol{E}$,

$$\int_{\Omega} (\nabla \times \xi) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \overline{\nabla \times \boldsymbol{v}} \, \xi \, d\Omega$$
Formulação variacional no plano

 $\bullet \bullet \circ$

Teorema de Stokes em \mathbb{R}^3 com $\boldsymbol{u} = [0, 0, \xi]^T, \boldsymbol{v} \in V$:

$$\int_{\Omega} (\nabla \times \xi) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \overline{\nabla \times \boldsymbol{v}} \, \xi \, d\Omega$$

Escolhendo $\xi = \mu^{-1} \nabla \times \boldsymbol{E}$,

$$\int_{\Omega} \nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \overline{\nabla \times \boldsymbol{v}} \, (\mu^{-1} \nabla \times \boldsymbol{E}) \, d\Omega$$

~ @ > < 돈 >

Formulação variacional no plano

 $\bullet \bullet \circ$

Teorema de Stokes em \mathbb{R}^3 com $\boldsymbol{u} = [0, 0, \xi]^T, \boldsymbol{v} \in V$:

$$\int_{\Omega} (\nabla \times \xi) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \overline{\nabla \times \boldsymbol{v}} \, \xi \, d\Omega$$

Escolhendo $\xi = \mu^{-1} \nabla \times \boldsymbol{E}$,

$$(\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}), \boldsymbol{v}) = (\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v})$$

Formulação variacional no plano

 $\bullet \bullet \circ$

Teorema de Stokes em \mathbb{R}^3 com $\boldsymbol{u} = [0, 0, \xi]^T, \boldsymbol{v} \in V$:

$$\int_{\Omega} (\nabla \times \xi) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \overline{\nabla \times \boldsymbol{v}} \, \xi \, d\Omega$$

Escolhendo $\xi = \mu^{-1} \nabla \times \boldsymbol{E}$,

$$(\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}), \boldsymbol{v}) = (\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v})$$

Formulação variacional: encontrar $E \in V$ tal que

$$(\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v}) - \omega^2 (\tilde{\boldsymbol{\epsilon}} \boldsymbol{E}, \boldsymbol{v}) = (\boldsymbol{F}, \boldsymbol{v}) \quad \forall \ \boldsymbol{v} \in V$$

Formulação variacional no plano

 $\bullet \bullet \circ$

Teorema de Stokes em \mathbb{R}^3 com $\boldsymbol{u} = [0, 0, \xi]^T, \boldsymbol{v} \in V$:

$$\int_{\Omega} (\nabla \times \xi) \cdot \boldsymbol{v} \, d\Omega = \int_{\Omega} \overline{\nabla \times \boldsymbol{v}} \, \xi \, d\Omega$$

Escolhendo $\xi = \mu^{-1} \nabla \times \boldsymbol{E}$,

$$(\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}), \boldsymbol{v}) = (\mu^{-1} \nabla \times \boldsymbol{E}, \nabla \times \boldsymbol{v})$$

Formulação variacional: encontrar $[E_1, E_2]^T \in V$ tal que

$$\begin{pmatrix} \mu^{-1} \left(\frac{\partial E_2}{\partial x} - \frac{\partial E_1}{\partial y} \right), \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right) \end{pmatrix} - \omega^2 (\tilde{\epsilon} E_1, v_1) \\ - \omega^2 (\tilde{\epsilon} E_2, v_2) = (F_1, v_1) + (F_2, v_2) \quad \forall [v_1, v_2]^T \in V$$

<02 > < ≥ >

Formulação variacional no plano

•••

Vetor normal e vetor tangente no plano (Grote et al, 2008):

Formulação variacional no plano

•••

Vetor normal e vetor tangente no plano (Grote et al, 2008):

 $\boldsymbol{v} \cdot \boldsymbol{t} = v_1(-n_2) + v_2(n_1)$ $\boldsymbol{v} \times \boldsymbol{n} = v_2 n_1 - v_1 n_2$

- 4 @ ▶ 4 문)

Formulação variacional no plano

•••

Vetor normal e vetor tangente no plano (Grote et al, 2008):

 $\boldsymbol{v} \cdot \boldsymbol{t} = \boldsymbol{v} imes \boldsymbol{n}$

Saulo P. Oliveira

(《 伊 》 《 臣 》

Condições de contorno no plano

Lado sul:

 $\boldsymbol{E} \times \boldsymbol{n}_1 = \boldsymbol{E} \cdot \boldsymbol{t}_1 = \boldsymbol{0}$

Saulo P. Oliveira

< ∰ > < ≣ >

Condições de contorno no plano

Lado sul:

$$(E_1, E_2) \cdot (1, 0) = 0 \Longrightarrow E_1 = 0$$

< @ ▶ < 돈 :

Condições de contorno no plano

Lado norte:

$$\boldsymbol{E} \times \boldsymbol{n}_2 = \boldsymbol{E} \cdot \boldsymbol{t}_2 = 0$$

Saulo P. Oliveira

Condições de contorno no plano

Lado norte:

$$(E_1, E_2) \cdot (-1, 0) = 0 \Longrightarrow E_1 = 0$$

- 《 🗗 🕨 - (톤)

Condições de contorno no plano

Lado oeste:

$$\boldsymbol{E} \times \boldsymbol{n}_3 = \boldsymbol{E} \cdot \boldsymbol{t}_3 = \boldsymbol{0}$$

Saulo P. Oliveira

Condições de contorno no plano

Lado oeste:

$$(E_1, E_2) \cdot (0, -1) = 0 \Longrightarrow E_2 = 0$$

- 《 🗗 🕨 - 《 문)

Condições de contorno no plano

Lado leste:

$$\boldsymbol{E} \times \boldsymbol{n}_4 = \boldsymbol{E} \cdot \boldsymbol{t}_4 = \boldsymbol{0}$$

Saulo P. Oliveira

Condições de contorno no plano

Lado leste:

$$(E_1, E_2) \cdot (0, 1) = 0 \Longrightarrow E_2 = 0$$

▲ 伊 ▷ ▲ 王 □

Condições de contorno no plano

resumindo:

 $V = \{ \boldsymbol{E} \in H(\operatorname{curl}, \Omega); \ \boldsymbol{E} \times \boldsymbol{n} = \boldsymbol{0} \ \text{ sobre } \Gamma \}$

Condições de contorno no plano

resumindo:

$$V = \left\{ \boldsymbol{E} = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} \in H(\operatorname{curl}, \Omega); \ E_1 |_{\Gamma_1} = E_1 |_{\Gamma_2} = E_2 |_{\Gamma_3} = E_2 |_{\Gamma_4} = 0 \right\}$$

Vamos utilizar inicialmente o mesmo tipo de funções de base do problema do potencial, porém vetoriais:

 $oldsymbol{N}_1(oldsymbol{x}), oldsymbol{N}_2(oldsymbol{x}), \ldots, oldsymbol{N}_n(oldsymbol{x})$

Vamos utilizar inicialmente o mesmo tipo de funções de base do problema do potencial, porém vetoriais:

$$egin{pmatrix} N_1^1(oldsymbol{x})\ N_1^2(oldsymbol{x}) \end{pmatrix}, egin{pmatrix} N_2^1(oldsymbol{x})\ N_2^2(oldsymbol{x}) \end{pmatrix}, \dots, egin{pmatrix} N_n^1(oldsymbol{x})\ N_n^2(oldsymbol{x}) \end{pmatrix}$$

Vamos utilizar inicialmente o mesmo tipo de funções de base do problema do potencial, porém vetoriais:

$$egin{pmatrix} N_1(oldsymbol{x}) \ 0 \ 0 \ N_1(oldsymbol{x}) \end{pmatrix}, egin{pmatrix} N_2(oldsymbol{x}) \ 0 \ N_2(oldsymbol{x}) \end{pmatrix}, \dots, egin{pmatrix} N_n(oldsymbol{x}) \ 0 \ N_n(oldsymbol{x}) \end{pmatrix}$$

Vamos utilizar inicialmente o mesmo tipo de funções de base do problema do potencial, porém vetoriais:

$$egin{pmatrix} N_1(oldsymbol{x}) \ 0 \ 0 \ N_1(oldsymbol{x}) \end{pmatrix}, egin{pmatrix} N_2(oldsymbol{x}) \ 0 \ N_2(oldsymbol{x}) \end{pmatrix}, \dots, egin{pmatrix} N_n(oldsymbol{x}) \ 0 \ N_n(oldsymbol{x}) \end{pmatrix}$$

Agora temos duas funções por vértice

 $m{N}_1^v(m{x}),m{N}_2^v(m{x}),m{N}_3^v(m{x}),m{N}_4^v(m{x}),\dots,m{N}_{2n-1}^v(m{x}),m{N}_{2n}^v(m{x})$

Vamos utilizar inicialmente o mesmo tipo de funções de base do problema do potencial, porém vetoriais:

$$egin{pmatrix} N_1(oldsymbol{x}) \ 0 \ 0 \ N_1(oldsymbol{x}) \end{pmatrix}, egin{pmatrix} N_2(oldsymbol{x}) \ 0 \ N_2(oldsymbol{x}) \end{pmatrix}, \dots, egin{pmatrix} N_n(oldsymbol{x}) \ 0 \ N_n(oldsymbol{x}) \end{pmatrix}$$

Agora temos duas funções por vértice

$$N_1^v(x), N_2^v(x), N_3^v(x), N_4^v(x), \dots, N_{2n-1}^v(x), N_{2n}^v(x)$$

Equações do sistema (método de Galerkin):

$$\sum_{j=1}^{2n} E_j(\mu^{-1}\nabla \times \boldsymbol{N}_j^v, \nabla \times \boldsymbol{N}_i^v) - \omega^2(\tilde{\epsilon}\boldsymbol{N}_j^v, \boldsymbol{N}_i^v) = (\boldsymbol{F}, \boldsymbol{N}_i^v) \quad 1 \le i \le 2n$$

- 세 년 대 시 문 대

Vamos utilizar inicialmente o mesmo tipo de funções de base do problema do potencial, porém vetoriais:

$$egin{pmatrix} N_1(oldsymbol{x}) \ 0 \ \end{pmatrix}, egin{pmatrix} 0 \ N_1(oldsymbol{x}) \end{pmatrix}, egin{pmatrix} N_2(oldsymbol{x}) \ N_2(oldsymbol{x}) \end{pmatrix}, \dots, egin{pmatrix} N_n(oldsymbol{x}) \ 0 \ \end{pmatrix}, egin{pmatrix} 0 \ N_n(oldsymbol{x}) \end{pmatrix}$$

Agora temos duas funções por vértice

$$m{N}_1^v(m{x}),m{N}_2^v(m{x}),m{N}_3^v(m{x}),m{N}_4^v(m{x}),\dots,m{N}_{2n-1}^v(m{x}),m{N}_{2n}^v(m{x})$$

Equações do sistema (método de Galerkin):

$$\sum_{j=1}^{2n} E_j \left(\mu^{-1} \left(\frac{\partial N_j^{v,2}}{\partial x} - \frac{\partial N_j^{v,1}}{\partial y} \right), \left(\frac{\partial N_i^{v,2}}{\partial x} - \frac{\partial N_i^{v,1}}{\partial y} \right) \right) - \omega^2 (\tilde{\epsilon} N_j^{v,1}, N_i^{v,1}) - \omega^2 (\tilde{\epsilon} N_j^{v,2}, N_i^{v,2}) = (F_1, N_i^{v,1}) + (F_2, N_i^{v,2}) \quad 1 \le i \le 2n$$

Base local

Vamos enumerar a base local do seguinte modo:

$$oldsymbol{N}_1^{v,e}(oldsymbol{x}) = egin{pmatrix} N_1^e(oldsymbol{x}) \ 0 \end{pmatrix}, oldsymbol{N}_2^{v,e}(oldsymbol{x}) = egin{pmatrix} N_2^e(oldsymbol{x}) \ 0 \end{pmatrix}, oldsymbol{N}_3^{v,e}(oldsymbol{x}) = egin{pmatrix} N_3^e(oldsymbol{x}) \ 0 \end{pmatrix},$$

$$oldsymbol{N}_4^{v,e}(oldsymbol{x}) = egin{pmatrix} 0 \ N_1^e(oldsymbol{x}) \end{pmatrix}, oldsymbol{N}_5^{v,e}(oldsymbol{x}) = egin{pmatrix} 0 \ N_2^e(oldsymbol{x}) \end{pmatrix}, oldsymbol{N}_6^{v,e}(oldsymbol{x}) = egin{pmatrix} 0 \ N_3^e(oldsymbol{x}) \end{pmatrix},$$

 $\{N_1^e({\pmb{x}}),\ldots,N_3^e({\pmb{x}})\}$: base local do caso potencial.

(十四) (十三)

Condições de contorno

$$V = \left\{ \boldsymbol{E} = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} \in H(\operatorname{curl}, \Omega); \ E_1 |_{\Gamma_1} = E_1 |_{\Gamma_2} = E_2 |_{\Gamma_3} = E_2 |_{\Gamma_4} = 0 \right\}$$

Nas quatro quinas do domínio: $E_1 = E_2 = 0$.

Saulo P. Oliveira

⇒ ⊳

Exemplo 1: meio condutivo

Sejam
$$\Omega = (0,1)^2$$
 e $E = \begin{bmatrix} \sin(M\pi y) \\ i\sin(M\pi x) \end{bmatrix}$, $M \in \mathbb{Z}$

•0

Saulo P. Oliveira

Exemplo 1: meio condutivo

Sejam
$$\Omega = (0,1)^2$$
 e $\boldsymbol{E} = \begin{bmatrix} \sin(M\pi y) \\ i\sin(M\pi x) \end{bmatrix}$, $M \in \mathbb{Z}$

Temos que $\boldsymbol{E} \cdot \boldsymbol{t} = 0$ em Γ e

$$\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) - \omega^2 \tilde{\boldsymbol{\epsilon}} \boldsymbol{E} = \begin{bmatrix} [(M\pi)^2 - \omega^2 \tilde{\boldsymbol{\epsilon}}] \sin(M\pi y) \\ i[(M\pi)^2 - \omega^2 \tilde{\boldsymbol{\epsilon}}] \sin(M\pi x) \end{bmatrix} := \tilde{\boldsymbol{F}}$$

< @ ▶ < ≣ ▶

•0

Exemplo 1: meio condutivo

Sejam
$$\Omega = (0,1)^2$$
 e $\boldsymbol{E} = \begin{bmatrix} \sin(M\pi y) \\ i\sin(M\pi x) \end{bmatrix}$, $M \in \mathbb{Z}$

Temos que $\boldsymbol{E} \cdot \boldsymbol{t} = 0$ em Γ e

$$\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) - \omega^2 \tilde{\boldsymbol{\epsilon}} \boldsymbol{E} = \begin{bmatrix} [(M\pi)^2 - \omega^2 \tilde{\boldsymbol{\epsilon}}] \sin(M\pi y) \\ i[(M\pi)^2 - \omega^2 \tilde{\boldsymbol{\epsilon}}] \sin(M\pi x) \end{bmatrix} := \tilde{\boldsymbol{F}}$$

Vamos considerar o problema

$$\begin{cases} \nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) - \omega^2 \tilde{\epsilon} \boldsymbol{E} &= \tilde{\boldsymbol{F}}, \quad \boldsymbol{x} \in \Omega \\ \boldsymbol{E} \times \boldsymbol{n} &= \boldsymbol{0}, \quad \boldsymbol{x} \in \Gamma \quad (\tilde{\epsilon} = \epsilon + i\sigma/\omega) \end{cases}$$

 $\operatorname{com} \mu = 1, \ \epsilon = 1, \ \sigma = 1.$

00

Exemplo 1: meio condutivo

Malhas utilizadas:

< @ > < ≣ >

Exemplo 1: meio condutivo

4 3 >

Exemplo 1: meio condutivo

⇒ ⊳

Exemplo 1: meio condutivo

3.0

Exemplo 1: meio condutivo

Saulo P. Oliveira

Exemplo 1: meio condutivo

Saulo P. Oliveira

Exemplo 1: meio condutivo

Exemplo 1: meio condutivo

Saulo P. Oliveira

Métodos de Elementos Finitos para as Equações de Maxwell 58/61
Exemplo 1: meio condutivo

Exemplo 2: meio dielétrico

Sejam
$$\Omega = (0,1)^2$$
 e $\boldsymbol{E} = \begin{bmatrix} \sin(M\pi y) \\ i\sin(M\pi x) \end{bmatrix}, \quad M \in \mathbb{Z}$

Temos que $\boldsymbol{E} \cdot \boldsymbol{t} = 0$ em Γ e

$$\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) - \omega^2 \tilde{\boldsymbol{\epsilon}} \boldsymbol{E} = \begin{bmatrix} [(M\pi)^2 - \omega^2 \tilde{\boldsymbol{\epsilon}}] \sin(M\pi y) \\ i[(M\pi)^2 - \omega^2 \tilde{\boldsymbol{\epsilon}}] \sin(M\pi x) \end{bmatrix} := \tilde{\boldsymbol{F}}$$

Vamos considerar o problema

$$\left\{ \begin{array}{rl} \nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) - \omega^2 \tilde{\epsilon} \boldsymbol{E} &= \tilde{\boldsymbol{F}}, \quad \boldsymbol{x} \in \Omega \\ \boldsymbol{E} \times \boldsymbol{n} &= \boldsymbol{0}, \quad \boldsymbol{x} \in \Gamma \quad (\tilde{\epsilon} = \epsilon + i\sigma/\omega) \end{array} \right.$$

 $\operatorname{com} \mu = 1, \ \epsilon = 1, \ \sigma = 0.$

< *⊡* > < ∃ >

00

Exemplo 2: meio dielétrico

Sejam
$$\Omega = (0,1)^2$$
 e $\boldsymbol{E} = \begin{bmatrix} \sin(M\pi y) \\ i\sin(M\pi x) \end{bmatrix}, \quad M \in \mathbb{Z}$

Temos que $\boldsymbol{E} \cdot \boldsymbol{t} = 0$ em Γ e

$$\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) - \omega^2 \tilde{\boldsymbol{\epsilon}} \boldsymbol{E} = \begin{bmatrix} [(M\pi)^2 - \omega^2 \tilde{\boldsymbol{\epsilon}}] \sin(M\pi y) \\ i[(M\pi)^2 - \omega^2 \tilde{\boldsymbol{\epsilon}}] \sin(M\pi x) \end{bmatrix} := \tilde{\boldsymbol{F}}$$

Vamos considerar o problema

$$\left\{ \begin{array}{rl} \nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}) - \omega^2 \tilde{\boldsymbol{\epsilon}} \boldsymbol{E} &= \tilde{\boldsymbol{F}}, \quad \boldsymbol{x} \in \Omega \\ \boldsymbol{E} \times \boldsymbol{n} &= \boldsymbol{0}, \quad \boldsymbol{x} \in \Gamma \quad (\tilde{\boldsymbol{\epsilon}} = \boldsymbol{\epsilon} + i\sigma/\omega) \end{array} \right.$$

 $\begin{array}{l} \mbox{com } \mu=1, \ \epsilon=1, \ \sigma=0. \\ \mbox{OBS: } \omega \mbox{ é um autovalor se } \omega=0 \ \mbox{ ou } \ \omega=M\pi/\sqrt{\epsilon} \end{array}$

00

Exemplo 2: meio dielétrico

Saulo P. Oliveira

Métodos de Elementos Finitos para as Equações de Maxwell 60/61

Exemplo 2: meio dielétrico

Exemplo 2: meio dielétrico

⇒ ⊳

Exemplo 2: meio dielétrico

Re(E_v)

Exemplo 2: meio dielétrico

-2

2 -

-2 0

0.5

0

Exemplo 2: meio dielétrico

0 -1

0

Exemplo 2: meio dielétrico

Métodos de Elementos Finitos para as Equações de Maxwell 60/61

Exemplo 2: meio dielétrico

 $M = 3, \omega = 1$ (malha fina):

Exemplo 2: meio dielétrico

 $M = 3, \omega = 1$ (malha fina):

A solução em baixas frequências será aprimorada por meio dos elementos finitos de arestas

(十日) (十日)

Referências

- A. Bossavit (1988) Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, *IEE Proc.*, 135(8), 493-500.
- Dey & Morrison (1979) Resistivity modeling for arbitrarily shaped three-dimensional structures, *Geophysics*, 44(4), 753-780
- J. Jin (2003). The finite element method in electromagnetics, 2nd ed, Wiley.
- D. Komatitsch, J. Tromp (1999) Introduction to the spectral-element method for 3-D seismic wave propagation, *Geophys. J. Int.* 139 (3), 806-822.
- P. Monk (2003) Finite element methods for Maxwell's equations, Oxford University Press.
- S. Ward e G. Hohmann (1988). Electromagnetic Theory for Geophysical Applications. *Electromagnetic Methods in Applied Geophysics* (M. Nabighian, ed.), SEG.