SIMPLEX

1) Coloque na forma padrão os seguintes problemas de programação linear:

a) Maximizar
$$-X_1 - 7 X_2 + 8 X_3 + X_4$$

Sujeito a
$$X_1 + X_2 - X_3 + X_4 \le 4$$

$$X_1 + X_3 \ge 9$$

$$X_2 + X_3 + X_4 \ge 6$$

$$X_1 \ge 0, X_2 \ge 0, X_3 \ge 0, X_4 \ge 0$$

b) Minimizar
$$3 X_1 - 3 X_2 + 7 X_3$$

Sujeito a
$$X_1 + X_2 + X_3 \le 40$$

$$X_1 + 9 X_2 - 7 X_3 \ge -5$$

$$5 X_1 + 3 X_2 \ge 2$$

$$X_1 \ge 0, X_2 \ge 0, X_3 \le 0$$

c) Maximizar
$$-X_1 + X_2 - 3X_3$$

Sujeito a $X_1 + X_2 + X_3 \le 25$
 $X_1 + X_2 - X_3 \ge 10$
 $5X_1 + 3X_2 = 100$
 $X_1 \ge 0, X_2 \ge 0, X_3$ livre

d) Min
$$z = 4x_1 + x_2$$

s. a. $x_1 + x_2 \ge 4$
 $2x_1 + x_2 = 12$
 $x_1 - x_2 \le 0$
 $x_1, x_2 \ge 0$

2) Considere o seguinte PPL:

$$\begin{aligned} \text{Maximizar } 50X_1 + 20 \ X_2 \\ \text{Sujeito a} \\ 2X_1 + 4X_2 &\leq 400 \\ 100X_1 + 50X_2 &\leq 8000 \\ X_1 &\leq 60 \\ X_1, X_2 &\geq 0 \end{aligned}$$

- a) Resolva o problema via simplex por quadros.
- b) Resolva o problema via simplex revisado.

3) Dado o PPL:

$$\min z = -2x_1 - 3x_2$$

$$s.a \begin{cases} 2x_1 + x_2 \ge 14 \\ x_1 + 2x_2 \ge 16 \\ x_1 + x_2 \le 22 \\ x_2 \le 10 \\ x_1, x_2 \ge 0 \end{cases}$$

- a) Coloque-o na forma padrão (com todas as variáveis de folga, de excesso e artificiais):
- b) Resolva pelo Simplex usando o método das duas fases (use somente os quadros abaixo para apresentar os tableaux): Apresente a solução de cada quadro ao lado dele, indicando variáveis básicas e não básicas. Cada Solução do quadro terá uma

- Letra, esta letra identificará o ponto na solução gráfica. Não é obrigatório usar todas as tabelas. Apresente os valores na forma de fração.
- c) Resolva o problema graficamente Identificando as soluções encontradas nos quadros do SIMPLEX anteriormente calculado.

4) Resolva o seguinte PPL:

$$\begin{array}{ll} \text{Min} & z=4x_1+x_2\\ \text{s. a.} & x_1+x_2\geq 4\\ & 2x_1+x_2=12\\ & x_1-x_2\leq 0\\ & x_1,x_2\geq 0 \end{array}$$

5) O quadro seguinte refere-se a um problema de maximização:

X Β	х1	x2	х3	х4	х5	b
Z	3	0	2	0	0	10
x2	-2	1	δ	0	0	β
x4	-4	0	φ	1	0	4
x5	-2	0	-1	0	1	α

Quais as condições devem obedecer α , β , ϕ , δ e ϵ para que sejam verdadeiras as seguintes afirmações:

- a) A solução é ótima.
- b) A solução primal é não limitada.
- c) Existem múltiplas soluções ótimas.