3.5 Problemas de logística 195

- 3.5.1 Roteamento de veículos 195
- 3.5.2 Localização de facilidades 200

Geralmente, temos três objetivos

- i. Redução de custos (custos variáveis).
- ii. Redução de capital (investimento, custos fixos).
- iii. Melhoria do serviço (pode conflitar com os dois objetivos acima).

Se há um conjunto de pontos/nós dispersos com demandas, então, quais são os custos mínimos para fornecer os produtos a esses pontos/nós de demanda?

Algumas formas de modelar esse problema são:

- 1) caminho de custo mínimo;
- 2) minimum spanning tree problems-MST;
- 3) problemas de roteamento de veículo-*VRP*;
- 4) problemas de localização;
- 5) problemas de localização e roteamento.

0) Algumas definições

 $N = \{1, 2, ..., n\}$: um conjunto finito de elementos chamados de nós ou vértices.

 $E = \{1,2,...,m\}$: um conjunto de pares de nós (i, j) chamados de aresta.

<u>Definição 1</u>: G = G(N, E) é chamado de <u>grafo</u>.

<u>Definição 2</u>: Grafo completo é o grafo que possui todas as ligações possíveis entre todos os nós.

<u>Definição 3</u>: Grafo orientado é um grafo onde as arestas são pares ordenados. Neste caso a aresta (i, j) é chamada de arco (i, j) onde i é o nó inicial e j o nó final do arco. Caso contrário o grafo é dito não orientado.

1) Caminho de custo mínimo

O problema do caminho mais curto "shortest path problem", consiste em encontrar o menor caminho entre dois nós. Assim, resolver este problema pode significar determinar o caminho entre dois nós com o custo mínimo, ou com o menor tempo de viagem.

→ ALGORITMOS: Dijkstra, Floyd

2) Minimum spanning tree problems-MST

O problema da mínima arborescência-MST é o de conectar n nós em uma rede sem ciclos¹ (árvore geradora) e com o mínimo de peso/custo total possível (árvore geradora mínima).

→ ALGORITMOS: Prim, Kruskall

Problemas de roteamento de veículos-VRP

Se ao realizamos uma entrega a n clientes usando apenas um único veículo, ou seja, a capacidade do veículo não é uma restrição, com o veículo retornando ao depósito após a entrega final, temos o problema do caixeiro viajante-TSP.

Se necessário mais de um veículo temos um problema de roteamento de veículos.

Dados:

- G = (N, E) um grafo orientado completo
- N = C ∪ {0} o conjunto de nós, onde C = {1, ..., n} é o conjunto de clientes e 0 o depósito (nó de saída)
- $E = \{(i, j) \mid i, j \in N, i \neq j\}$ o conjunto de arcos de conexão entre os nós
 - $c_{ij} \rightarrow custo$ para percorrer o arco (i, j), l ou seja, custo de ir do nós i ao nó j
 - $d_i \rightarrow$ demanda do cliente i
 - $K \rightarrow$ número de veículos idênticos e capacidade Q localizados no depósito

Objetivo: O Problema de Roteamento de Veículos Capacitado-PRVC baseia-se em encontrar um número K de rotas com o objetivo de minimizar o custo total do transporte e atender as seguintes restrições:

- i. Cada cliente pertence somente a uma rota;
- ii. Cada rota inicia e termina no depósito;
- iii. A demanda total de uma rota não pode exceder a capacidade do veículo.

¹ Ciclo é uma cadeia fechada em que nó inicial(final) coincide com o nó final(inicial). Cadeia é uma sequência de arcos sem considerar a orientação.

Formulação I (http://taurus.unicamp.br/bitstream/REPOSIP/306902/1/Alves FernandoSilveira M.pdf)

<u>Variáveis</u>: para todo veículo k e todo arco $(i,j) \in E$,

$$x_{ijk} \in \{0,1\} \rightarrow x_{ijk} = 1$$
 se o veículo k percorre a aresta (i, j) $(x_{ijk} \not\exists para i = j)$

<u>Função objetivo</u>:

$$\min Z = \sum_{k=1}^{K} \sum_{j=0}^{n} \sum_{j=0}^{n} c_{ij} x_{ijk}$$

Restrições:

i. O veículo k deve partir do depósito

$$\sum_{j=1}^{n} x_{0jk} = 1, \forall k \in \{1, ..., K\}$$

ii. O cliente j é designado a um único veículo k

$$\sum_{k=1}^{K} \sum_{i=0}^{n} x_{ijk} = 1, \forall j \in \{1, ..., n\}$$

iii. Se o veículo k sai do nó i entçao ele entrou nesse nó

$$\sum_{j=0}^n x_{ijk} = \sum_{j=0}^n x_{jik}, \forall i \in \{1, ..., n\}, \forall k \in \{1, ..., K\}$$

iv. A demanda total da rota do veículo k não excede a sua capacidade Q

$$\sum_{i=1}^{n} d_{i} \sum_{j=0}^{n} x_{ijk} \leq Q, \forall k \in \{1, ..., K\}$$

v. Eliminação de sub-rotas isoladas da origem

$$\sum_{i \in S} \sum_{j \in S} x_{ijk} \le |S| - 1, \quad S \subset C, \quad 2 \le |S| \le \left\lfloor \frac{n}{2} \right\rfloor, \ \forall k \in K$$

Exemplo: Seja n = 9, Q = 50, K = 3. As coordenadas geográficas dos 9 clientes são indicadas a seguir:

CLIENTE	1	2	3	4	5	6	7	8	9	0
Х	16	23	40	9	97	78	20	71	64	50
у	32	1	65	77	71	24	26	98	55	50
										<u> </u>
CLIENTE	1	2	3	4	5	6	7	8	9	
Demanda	11	35	2	9	3	18	8	10	11	_

Cálculo das distâncias/custos entre as cidades:

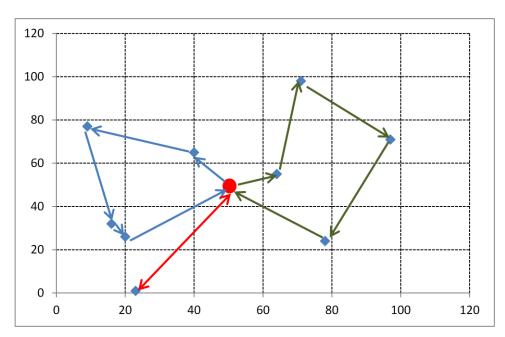
Custo	0	2	3	4	5	6	7	8	9	10
0	0	38	52	18	49	51	38	38	52	14
2	38	0	34	40	45	89	62	7	85	53
3	52	34	0	64	79	95	51	27	104	62
4	18	40	64	0	33	57	55	43	45	26
5	49	45	79	33	0	88	87	52	65	59
6	51	89	95	57	88	0	50	89	37	36
7	38	62	51	55	87	50	0	58	74	34
8	38	7	27	43	52	89	58	0	88	52
9	52	85	104	45	65	37	74	88	0	43
10	14	53	62	26	59	36	34	52	43	0

Veículo 1: x(1,7,1)=x(7,6,1)=x(6,9,1)=x(9,10,1)=x(10,1,1)=1

Veículo 2: x(1,3,2)=x(3,1,2)=1

Veículo 3: x(1,4,3)=x(4,5,3)=x(5,2,3)=x(2,8,3)=x(8,1,3)=1

Custo total: 427



Formulação II - MTZ (http://www-bcf.usc.edu/~maged/publications/solvingRVRP-IIE.pdf)

Variáveis: para todo veículo k e todo arco (i, j) ∈ E,

 $x_{ijk} \in \{0,1\} \rightarrow x_{ijk} = 1$ se o veículo k percorre a aresta (i, j) $(x_{ijk} \not\exists para i = j)$ $u_i \in \mathbb{Z}, \forall i \in \{1, ..., n\}$ é a demanda acumulada no nó i

Função bjetivo:

$$\min Z = \sum_{k=1}^{K} \sum_{j=0}^{n} \sum_{j=0}^{n} c_{ij} x_{ijk}$$

Restrições:

i. O veículo k deve partir do depósito

$$\sum_{j=1}^{n} x_{0jk} = 1, \forall k \in \{1, ..., K\}$$

ii. O cliente j é designado a um único veículo k

$$\sum_{k=1}^{K} \sum_{i=0}^{n} x_{ijk} = 1, \forall j \in \{1, ..., n\}$$

iii. Se o veículo k sai do nó i então ele entrou nesse nó

$$\sum_{i=0}^{n} x_{ijk} = \sum_{j=0}^{n} x_{jik}, \forall i \in \{1, ..., n\}, \forall k \in \{1, ..., K\}$$

iv. A demanda total da rota do veículo k não excede a sua capacidade Q

$$\sum_{i=1}^n d_i \sum_{j=0}^n x_{ijk} \leq Q, \forall k \in \{1, \dots, K\}$$

i. Eliminação de sub-rotas

$$\begin{split} &u_j-u_i+Qx_{ij}\leq Q-d_j, \forall i\in\{1,...,n\}, \forall j\in\{1,...,n\}\\ &d_j\leq u_i\leq Q, \forall i\in\{1,...,n\} \end{split}$$

Algoritmos heurísticos para resolver o VRP:

→ ALGORITMOS: Christofides, Clarke and Wright

4) Problemas de localização de facilidades (Facility location problem)

Normalmente, ao procurar um local para (instalar) uma facilidade, vários fatores desempenham um papel: localização dos fornecedores, localização dos clientes, regulamentos, salários, preços do solo, etc. Em muitos problemas de localização, assume-se que a localização ideal é aquela que minimiza a soma das distâncias para os nós. No entanto, existem outras versões de problemas de localização.

Os problemas resultantes são, entre outros: a) problema de **p-medianas** (*p-median*) e; b) problema simples de localização de planta - **p-centros** (*p-centers*).

- a) **p-medianas** → localização de p facilidades e a designação de nós às facilidades de modo a *minimizar a soma das distâncias às facilidades*.
- b) p-centros → localização de p facilidades e a designação de nós às facilidades de modo a minimizar a distância máxima dos nós às facilidades.

Geralmente são utilizados/conhecidos os seguintes dados:

- $J \rightarrow$ conjunto de n nós que representam clientes, j = 1, ..., n
- $I \to conjunto$ de m nós que representam os locais candidatos à localização de facilidades, $i=1,...,m,m \ll n$
- $q_i \rightarrow$ demanda do cliente j
- $d_{ij} \rightarrow$ distância do cliente j à facilidade localizada em i
- $c_{ij} \rightarrow$ custo de atender a demanda q_j a partir da facilidade localizada em i
- $f_i \rightarrow$ custo fixo de instalação da facilidade em i
- $Q_i \rightarrow$ capacidade da facilidade localizada em i

a) Modelo matemático de p-medianas (minisum problem)

Deseja-se localizar/instalar um número pré-especificado de unidades de serviço, de modo a minimizar a soma das distâncias das mesmas até seus usuários.

Localização de p facilidades e a designação de clientes às facilidades de modo a minimizar a soma das distâncias (distância total) às facilidades.

- i. A demanda de um cliente é atendida por uma única facilidade (mediana)
- ii. Todo cliente deve ser servido pela facilidade mais próxima

<u>Dados</u> (*Uncapacitated facility location*):

- $c_{ij} \mathop{\rightarrow}\nolimits custo$ para designar o cliente j à facilidade i
- $p \rightarrow$ número de facilidades a serem instaladas

Variáveis:

 $y_i \in \{0,1\} \rightarrow y_i = 1$ se a facilidade é instalada no local i $x_{ij} \in \{0,1\} \rightarrow x_{ij} = 1$ se o cliente j for designado à facilidade i

Função objetivo

$$\min Z = \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij} x_{ij}$$

<u>Restrições</u>

i. O cliente j só é atendido pela facilidade i

$$\sum_{i=1}^{I} x_{ij} = 1, \forall j \in J$$

ii. o cliente j não pode ser designado à facilidade i se ela não for instalada $x_{ii} \leq y_i \ \forall i \in I, \forall j \in J$

iii. p facilidades deverão ser instaladas

$$\sum_{i=1}^{I} y_i = p$$

b) Modelo matemático de p-centros (minimax problem)

Deseja-se instalar um posto de serviço (pronto socorro, unidade do corpo de bombeiros, posto policial) para servir diversas comunidades. Este posto deve ser instalado numa dessas comunidades. O objetivo é minimizar a distância entre o posto de serviço e a comunidade mais distante, isto é, otimizar o pior caso.

Localização de p facilidades e a designação de clientes às facilidades de modo a minimizar a máxima distância de clientes às facilidades.

Nova variável: $r \rightarrow$ distância máxima permitida de um cliente a uma facilidade

Nova função objetivo: min Z = r

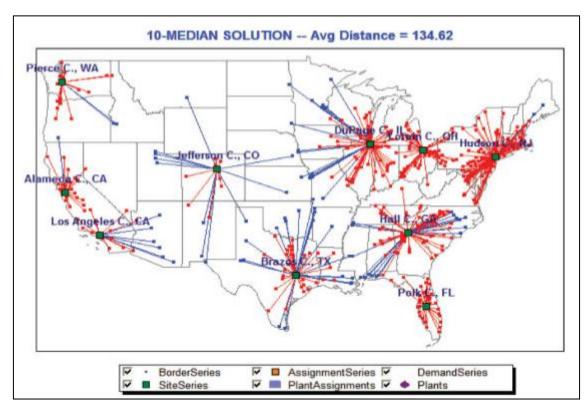
Restrição adicional (ao problema de p-medianas):

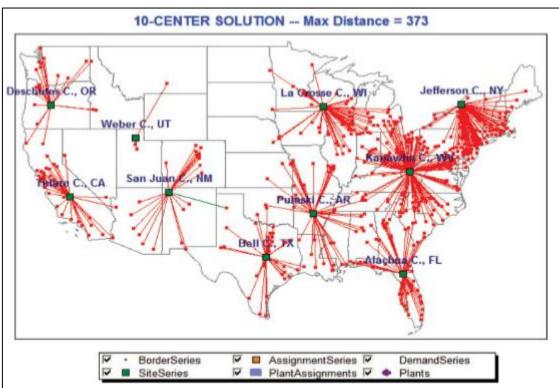
$$\sum_{i=1}^{I} d_{ij} x_{ij} \le r, \forall j \in J$$

Uma extensão é permitir locais de modo que cada nó de demanda esteja no máximo M quilômetros de uma instalação (problemas de cobertura). Outra extensão é levar em conta o roteamento ao localizar instalações: localização e roteamento.

Tanto o problema de p-medianas quanto o problema de p-centros, formulados como problemas de otimização, pertencem à classe dos NP-hard. Problemas dessa classe são pelo menos tão difíceis, nos termos de complexidade algorítmica, quanto qualquer outro problema da classe NP. Mais detalhes sobre complexidade podem ser encontrados em https://www.ime.usp.br/~pf/analise de algoritmos/aulas/NPcompleto.html.

Comparações





https://edisciplinas.usp.br/pluginfile.php/2455219/mod resource/content/1/Daskin Location Modeling.pdf

5) Problemas de localização e roteamento-LRP

Em alguns casos, as entregas a múltiplos nós de demanda podem ser combinadas em tours de entrega única (venda ambulante). Então vale a pena decidir simultaneamente sobre localização e rota. É necessário decidir em conjunto, porque se não levar o roteamento em conta na fase de localização, a localização da facilidade pode ser (muito) subótima.

O *Location-Routing Problem*-LRP é um problema muito complexo. Os métodos exatos geralmente são muito lentos. Heurísticas hierárquicas (localização primeiro, depois roteamento), por exemplo, agrupar primeiro, rotear depois, são muito utilizadas.