Publications

 

Preprints

  1. A. Kirilov, Wagner de Moraes, and Pedro Meyer Tokoro
    Denjoy-Carleman solvability of Vekua-type periodic operators
    Available on arXiv: arxiv.org/abs/2406.13110
     
  2. Duván Cardona, A. Kirilov, André Kowacs and Wagner de Moraes
    On the Sobolev boundedness of vector fields on compact Riemannian manifolds
    Avaiable on arXiv: arxiv.org/abs/2404.00182
     

Articles

  1. A. Kirilov, André Kowacs and Wagner de Moraes
    Global solvability and hypoellipticity for evolution operators on tori and spheres
    Mathematische Nachrichten, Volume xx, pp. 1-46, 2025
    DOI: https://doi.org/10.1002/mana.202300506
    Avaiable on arXiv: arxiv.org/abs/2306.15583
     
  2. Fernando de Ávila Silva, Marco Cappiello and A. Kirilov
    Systems of differential operators in time-periodic Gelfand-Shilov spaces
    Annali di Matematica Pura ed Applicata, Volume xx, pp. 1-23, 2025
    DOI: https://doi.org/10.1007/s10231-024-01499-z
    Avaiable on arXiv: arxiv.org/abs/2403.05096
     
  3. A. Kirilov, Wagner de Moraes, and Pedro Meyer Tokoro
    Solvability of Vekua-type periodic operators and applications to classical equations
    Indagationes Mathematicae, Volume 35, pp. 434-442, 2024
    DOI: https://doi.org/10.1016/j.indag.2024.03.001
    Avaiable on arXiv: arxiv.org/abs/2311.10683
     
  4. Wanderley Cerniauskas, Paulo Dattori da Silva and A. Kirilov;
    Semiglobal solvability for a class of first order operators,
    Matemática Contemporânea, Volume 52, pp. 54-70, 2022
    DOI: http://dx.doi.org/10.21711/231766362022/rmc524
    Avaiable on https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2022/12/Article-04-vol-52.pdf
     
  5. A. Kirilov, Wagner de Moraes and Michael Ruzhansky
    Global properties of vector fields on compact Lie groups in Komatsu classes. II. Normal forms
    Communications on Pure and Applied Analysis, Volume 21(11), pp. 3919-3940, 2022
    DOI: http://dx.doi.org/10.3934/cpaa.2022128
    Also avaiable on arXiv: arxiv.org/abs/1911.02486
     
  6. A. Kirilov, Wagner de Moraes and Michael Ruzhansky
    Global Properties of Vector Fields on Compact Lie Groups in Komatsu classes
    Zeitschrift für Analysis und ihre Anwendungen, Volume 40, Issue 4, 2021, pp. 425–451, 2021
    DOI: https://doi.org/10.4171/zaa/1691
    Also avaiable on arXiv: arxiv.org/abs/1910.01922
     
  7. A. Kirilov, Wagner de Moraes and Ricardo Paleari
    Global analytic hypoellipticity for a class of evolution operators on T1×S3.
    Journal of Differential Equations, Volume 296, pp. 699-723, 2021
    DOI: https://doi.org/10.1016/j.jde.2021.06.013
    Also avaiable on arXiv: arxiv.org/abs/2001.09965
     
  8. A. Kirilov, Wagner de Moraes and Michael Ruzhansky
    Global hypoellipticity and global solvability for vector fields on compact Lie groups
    Journal of Functional Analysis, Volume 280, Issue 2, 108806, 2021
    DOI: https://doi.org/10.1016/j.jfa.2020.108806
    Also avaiable on arXiv: arxiv.org/abs/1910.00059
     
  9. A. Kirilov, Wagner de Moraes and Michael Ruzhansky
    Partial Fourier series on compact Lie groups
    Bulletin des Sciences Mathématiques, Volume 160, 102853, 2020
    DOI:https://doi.org/10.1016/j.bulsci.2020.102853
    Also avaiable on arXiv: arxiv.org/abs/1909.12824.
     
  10. Wagner de Moraes and A. Kirilov
    Global Hypoellipticity for Strongly Invariant Operators
    Journal of Mathematical Analysis and Applications, Volume 486, Issue 1, 123878, 2020
    DOI: https://doi.org/10.1016/j.jmaa.2020.123878
    Also avaiable on arXiv: arxiv.org/abs/1902.08237
     
  11. Fernando de Ávila and A. Kirilov
    Perturbations of globally hypoelliptic operators on closed manifolds
    Journal of Spectral Theory, Volume 9, pp. 825-855, 2019
    DOI: https://doi.org/10.4171/JST/264
    Also avaiable on arXiv: arxiv.org/abs/1710.06760
     
  12. Fernando de Ávila, Rafael Gonzalez, A. Kirilov and Cléber de Medeira
    Global hypoellipticity for a class of pseudo-differential operators on the torus
    Journal of Fourier Analysis and Applications, Volume 25, pp. 1717-1758, 2019
    DOI: https://doi.org/10.1007/s00041-018-09645-x
    Also avaiable on arXiv: arxiv.org/abs/1612.02033
     
  13. Alexandre Árias Jr., A. Kirilov, and Cleber de Medeira
    Global Gevrey hypoellipticity on the torus for a class of systems of complex vector fields
    Journal of Mathematical Analysis and Applications, Volume 474, pp. 712-732, 2019
    DOI: https://doi.org/10.1016/j.jmaa.2019.01.074
    Also avaiable on arXiv: arxiv.org/abs/1810.01906
     
  14. Fernando de Ávila, Todor Gramchev, and A. Kirilov
    Global Hypoellipticity for First-Order Operators on Closed Smooth Manifolds
    Journal d'Analyse Mathématique, Volume 135, pp. 527-573, 2018
    DOI: https://doi.org/10.1007/s11854-018-0039-6
    Also avaiable on arXiv: arxiv.org/abs/1507.08880
     
  15. Adalberto Bergamasco, Cleber de Medeira, A. Kirilov, and Sérgio Zani
    On the global solvability of involutive systems
    Journal of Mathematical Analysis and Applications, Volume 444, pp. 527-549, 2016
    DOI: https://doi.org/10.1016/j.jmaa.2016.06.045
     
  16. Adalberto Bergamasco, Paulo Dattori, Rafael Gonzalez and A. Kirilov
    Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus
    Journal of Pseudo-Differential Operators and Applications, Volume 6, pp. 341-360, 2015
    DOI: doi.org/10.1007/s11868-015-0121-0
     
  17. Adalberto Bergamasco, A. Kirilov, Wagner Nunes and Sérgio Zani;
    Global solutions to involutive systems

    Proceedings of the American Mathematical Society, Volume 143, pp. 4851-4862, 2015
    DOI: https://doi.org/10.1090/proc/12633
     
  18. Adalberto Bergamasco, A. Kirilov, Wagner Nunes and Sérgio Zani;
    On the global solvability for overdetermined systems.
    Transactions of the American Mathematical Society, Volume 364, pp. 4533-4549, 2012
    DOI: https://doi.org/10.1090/S0002-9947-2012-05414-6
     
  19. Roberto DeLeo, Todor Gramchev and A. Kirilov;
    Global solvability in functional spaces for smooth nonsingular vector fields in the plane.
    Operator Theory: Advances and Applications, Volume 214, pp. 191-210, 2011
    DOI: https://doi.org/10.1007/978-3-0348-0049-5_11
    Also avaiable on arXiv: arxiv.org/abs/1001.2121
     
  20. Wanderley Cerniauskas and A. Kirilov;
    Solvability Ck near of the characteristic set for a class of vector fields of infinite type,
    Matemática Contemporânea, Volume 36, pp. 91-106, 2009
    DOI: http://doi.org/10.21711/231766362008/rmc367
    Avaiable on https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2021/12/36-7.pdf
     
  21. Adalberto Bergamasco and A. Kirilov;
    Global solvability for a class of overdetermined systems.
    Journal of Functional Analysis, Volume 252/2, pp. 603-629, 2007
    Avaiable on: https://www.sciencedirect.com/science/article/pii/S0022123607000973
    DOI: https://doi.org/10.1016/j.jfa.2007.03.013
     

Extended Abstracts

  1. A. Kirilov and Ricardo Paleari da Silva
    Diophantine conditions and global properties for systems of vector fields in tori and spheres
    Special volume of the Birkhäuser series "Research Prospectives Ghent Analysis and PDE Center" dedicated to the "PSORT 2024 Conference".
     
  2. Fernando de Ávila Silva and A. Kirilov
    Global hypoellipticity for time-periodic evolution equations: insights from eigenfunction expansions
    Special volume for the Springer series "Research Prospectives Ghent Analysis and PDE Center" dedicated to the "Analysis and PDE in Latin America - ICMAM 2022 Latin America".