Prof. Alexandre Kirilov - UFPR
Publications
Preprints
A. Kirilov, Wagner de Moraes, and Pedro Meyer Tokoro
Denjoy-Carleman solvability of Vekua-type periodic operators
Available on arXiv: arxiv.org/abs/2406.13110
Duván Cardona, A. Kirilov, André Kowacs and Wagner de Moraes
On the Sobolev boundedness of vector fields on compact Riemannian manifolds
Avaiable on arXiv: arxiv.org/abs/2404.00182
Articles
A. Kirilov, André Kowacs and Wagner de Moraes
Global solvability and hypoellipticity for evolution operators on tori and spheres
Mathematische Nachrichten , Volume xx, pp. 1-46, 2025
DOI: https://doi.org/10.1002/mana.202300506
Avaiable on arXiv: arxiv.org/abs/2306.15583
Fernando de Ávila Silva, Marco Cappiello and A. Kirilov
Systems of differential operators in time-periodic Gelfand-Shilov spaces
Annali di Matematica Pura ed Applicata , Volume xx, pp. 1-23, 2025
DOI: https://doi.org/10.1007/s10231-024-01499-z
Avaiable on arXiv: arxiv.org/abs/2403.05096
A. Kirilov, Wagner de Moraes, and Pedro Meyer Tokoro
Solvability of Vekua-type periodic operators and applications to classical equations
Indagationes Mathematicae , Volume 35, pp. 434-442, 2024
DOI: https://doi.org/10.1016/j.indag.2024.03.001
Avaiable on arXiv: arxiv.org/abs/2311.10683
Wanderley Cerniauskas, Paulo Dattori da Silva and A. Kirilov;
Semiglobal solvability for a class of first order operators ,
Matemática Contemporânea , Volume 52, pp. 54-70, 2022
DOI: http://dx.doi.org/10.21711/231766362022/rmc524
Avaiable on https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2022/12/Article-04-vol-52.pdf
A. Kirilov, Wagner de Moraes and Michael Ruzhansky
Global properties of vector fields on compact Lie groups in Komatsu classes. II. Normal forms
Communications on Pure and Applied Analysis , Volume 21(11), pp. 3919-3940, 2022
DOI: http://dx.doi.org/10.3934/cpaa.2022128
Also avaiable on arXiv: arxiv.org/abs/1911.02486
A. Kirilov, Wagner de Moraes and Michael Ruzhansky
Global Properties of Vector Fields on Compact Lie Groups in Komatsu classes
Zeitschrift für Analysis und ihre Anwendungen , Volume 40, Issue 4, 2021, pp. 425–451, 2021
DOI: https://doi.org/10.4171/zaa/1691
Also avaiable on arXiv: arxiv.org/abs/1910.01922
A. Kirilov, Wagner de Moraes and Ricardo Paleari
Global analytic hypoellipticity for a class of evolution operators on T1 ×S3 .
Journal of Differential Equations , Volume 296, pp. 699-723, 2021
DOI: https://doi.org/10.1016/j.jde.2021.06.013
Also avaiable on arXiv: arxiv.org/abs/2001.09965
A. Kirilov, Wagner de Moraes and Michael Ruzhansky
Global hypoellipticity and global solvability for vector fields on compact Lie groups
Journal of Functional Analysis , Volume 280, Issue 2, 108806, 2021
DOI: https://doi.org/10.1016/j.jfa.2020.108806
Also avaiable on arXiv: arxiv.org/abs/1910.00059
A. Kirilov, Wagner de Moraes and Michael Ruzhansky
Partial Fourier series on compact Lie groups
Bulletin des Sciences Mathématiques , Volume 160, 102853, 2020
DOI:https://doi.org/10.1016/j.bulsci.2020.102853
Also avaiable on arXiv: arxiv.org/abs/1909.12824 .
Wagner de Moraes and A. Kirilov
Global Hypoellipticity for Strongly Invariant Operators
Journal of Mathematical Analysis and Applications , Volume 486, Issue 1, 123878, 2020
DOI: https://doi.org/10.1016/j.jmaa.2020.123878
Also avaiable on arXiv: arxiv.org/abs/1902.08237
Fernando de Ávila and A. Kirilov
Perturbations of globally hypoelliptic operators on closed manifolds
Journal of Spectral Theory , Volume 9, pp. 825-855, 2019
DOI: https://doi.org/10.4171/JST/264
Also avaiable on arXiv: arxiv.org/abs/1710.06760
Fernando de Ávila, Rafael Gonzalez, A. Kirilov and Cléber de Medeira
Global hypoellipticity for a class of pseudo-differential operators on the torus
Journal of Fourier Analysis and Applications , Volume 25, pp. 1717-1758, 2019
DOI: https://doi.org/10.1007/s00041-018-09645-x
Also avaiable on arXiv: arxiv.org/abs/1612.02033
Alexandre Árias Jr., A. Kirilov, and Cleber de Medeira
Global Gevrey hypoellipticity on the torus for a class of systems of complex vector fields
Journal of Mathematical Analysis and Applications , Volume 474, pp. 712-732, 2019
DOI: https://doi.org/10.1016/j.jmaa.2019.01.074
Also avaiable on arXiv: arxiv.org/abs/1810.01906
Fernando de Ávila, Todor Gramchev, and A. Kirilov
Global Hypoellipticity for First-Order Operators on Closed Smooth Manifolds
Journal d'Analyse Mathématique , Volume 135, pp. 527-573, 2018
DOI: https://doi.org/10.1007/s11854-018-0039-6
Also avaiable on arXiv: arxiv.org/abs/1507.08880
Adalberto Bergamasco, Cleber de Medeira, A. Kirilov, and Sérgio Zani
On the global solvability of involutive systems
Journal of Mathematical Analysis and Applications , Volume 444, pp. 527-549, 2016
DOI: https://doi.org/10.1016/j.jmaa.2016.06.045
Adalberto Bergamasco, Paulo Dattori, Rafael Gonzalez and A. Kirilov
Global solvability and global hypoellipticity for a class of complex vector fields on the 3-torus
Journal of Pseudo-Differential Operators and Applications , Volume 6, pp. 341-360, 2015
DOI: doi.org/10.1007/s11868-015-0121-0
Adalberto Bergamasco, A. Kirilov, Wagner Nunes and Sérgio Zani;
Global solutions to involutive systems
Proceedings of the American Mathematical Society , Volume 143, pp. 4851-4862, 2015
DOI: https://doi.org/10.1090/proc/12633
Adalberto Bergamasco, A. Kirilov, Wagner Nunes and Sérgio Zani;
On the global solvability for overdetermined systems .
Transactions of the American Mathematical Society , Volume 364, pp. 4533-4549, 2012
DOI: https://doi.org/10.1090/S0002-9947-2012-05414-6
Roberto DeLeo, Todor Gramchev and A. Kirilov;
Global solvability in functional spaces for smooth nonsingular vector fields in the plane .
Operator Theory: Advances and Applications , Volume 214, pp. 191-210, 2011
DOI: https://doi.org/10.1007/978-3-0348-0049-5_11
Also avaiable on arXiv: arxiv.org/abs/1001.2121
Wanderley Cerniauskas and A. Kirilov;
Solvability Ck near of the characteristic set for a class of vector fields of infinite type ,
Matemática Contemporânea , Volume 36, pp. 91-106, 2009
DOI: http://doi.org/10.21711/231766362008/rmc367
Avaiable on https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2021/12/36-7.pdf
Adalberto Bergamasco and A. Kirilov;
Global solvability for a class of overdetermined systems .
Journal of Functional Analysis , Volume 252/2, pp. 603-629, 2007
Avaiable on: https://www.sciencedirect.com/science/article/pii/S0022123607000973
DOI: https://doi.org/10.1016/j.jfa.2007.03.013
Extended Abstracts
A. Kirilov and Ricardo Paleari da Silva
Diophantine conditions and global properties for systems of vector fields in tori and spheres
Special volume of the Birkhäuser series "Research Prospectives Ghent Analysis and PDE Center" dedicated to the "PSORT 2024 Conference".
Fernando de Ávila Silva and A. Kirilov
Global hypoellipticity for time-periodic evolution equations: insights from eigenfunction expansions
Special volume for the Springer series "Research Prospectives Ghent Analysis and PDE Center" dedicated to the "Analysis and PDE in Latin America - ICMAM 2022 Latin America".