Curriculum Vitae
Grupos de pesquisa em que participa na UFPR
Linhas de pesquisa que atua
- Álgebra linear numérica e suas aplicações
- Análise e solução numérica de equações diferenciais parciais
- Equações diferenciais parabólica e hiperbólica
Trabalhos
P. D. Damázio and M. A. R. Medar, On Some questions of the weak solutions of evolution equations for magnetohydrodynamic type. Proyecciones (Antofagasta), Chile, v. 16, n.02, p. 83-97, 1997.P. D. Damázio and M. A. R. Medar, On the convergence rate of semi-Galerkin approximations for the equations of viscous fluids in the presence of diffusion. Matemática Contemporânea, Brasil, v. 15, p. 105-126, 1998.
P. D. Damázio, A. K. Pani and Y. J. Yuan, On a Linearized Backward Euler Method for the Equations of Motion of Oldroyd Fluids of Order One. SIAM Journal on Numerical Analysis, Estados Unidos, v. 44, n.2, p. 804-825, 2006.
P. D. Damázio, F.Guillen-Gonzalez, J. V. Gutierrez-Santacreu and M. A. R. Medar, Local and Global Strong Solution by the Semi-Galerkin Method for the Model of Mass Diffusion. Matemática Contemporânea, v. 32, p. 63-83, 2007.
P. D. Damázio, F.Guillen-Gonzalez and M. A. R. Medar, Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion. Journal of Mathematical Analysis and Applications, v. 326, p. 468-487, 2007.
S. Bajpai, P. D. Damázio, N. Nataraj, A. K. Pani and Y. J. Yuan, Semidiscrete Galerkin method for equations of motion arising in kelvin-Voight model of viscoelastic fluid flow, Numerical Methods for Partial Differential Equations (Print),v. 29, p. 857-883, 2013.
P. D. Damázio, A. K. Pani, A. K. Pany and Y. J. Yuan, A modified nonlinear spectral Galerkin method for the equations of motion arising in the Kelvin-Voight fluids. (Aceito em Applicable Analysis,2013.)
P. D. Damázio and D. Goswami, A two-level finite element method for time-dependent incompressible Navier-Stokes equations with non-smooth initial data. (Submetido em Journal of Computational Mathematics,2012.)
P. D. Damázio and R. A. Siqueira, Strong solutions of Navier-Stokes equations of quantum incompressible fluids. (Submetido em Nonlinear Analysis Series B: Real World Applications, 2013.)
P. D. Damázio, Y.J. Yun and T. Zhang, A posteriori error estimates of fully discrete finite element method for Burgers equation in 2D. (Submetido em Journal of Scientific Computing, 2013.)
P. D. Damázio, Y.J. Yun and T. Zhang, A posteriori error analysis Galerkin finite element method the transient Stokes equations. (Submetido em Numerical Methods for Partial Differential Equations, 2013.)
P. D. Damázio, Y.J. Yun and T. Zhang, A large time stepping viscosity-splitting finite element method for the viscoelastic flows problem. (Aceito em Advances in Computational Mathematics, 2014.)
Artigos de Referência (Fluidos Incompressíveis)
R. Farwig, H. Kozono and H. Sohr, Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence.
S. M.Guzzo and G. Planas, One class of three dimensional Navier-Stokes equations with bounded delay, DCDS, Series B, vol. 16, Number 1, pp. 225-238.
C. Foias, R. Rosa and R. Temam, Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations, DCDS, vol. 27, Number 4, pp. 1611-1631.
V. K. Kalantarov and E. S. Titti, Global attractors and determining modes for the 3D Navier-Stokes_voight equations.